Skip to main content

Bacterioferritin: A Microbial Iron-Storage Protein?

  • Chapter
Iron Biominerals

Abstract

Iron is no less an essential element to most microbes than it is to higher organisms. Iron uptake systems and their regulation in Escherichia coli are relatively well characterized1 and the importance of many microbial iron-containing molecules, for example, the cytochromes2, is well established. Just over ten years ago the presence of a ferritin-like molecule was reported in Azotohacter vinelandii 3 and E. coli 4. It was considered to be ferritin-like in that it had an electron-dense iron-containing core with a protein coat of similar dimensions to those of mammalian ferritin. The two types of ‘ferritin’ had rather similar amino acid compositions and their non-haem iron-cores were of low redox potential, but the ‘bacterioferritins’ were distinguished by the presence of protoporphyrin IX. The bacterioferritin (BFR) of A. vinelandii was shown to be identical to the non-haem iron-containing cytochrome b 557.5 previously isolated by Bulen and co-workers5 and that from E. coli to the cytochrome b 1 described by Deeb and Hager6 and Fujita et al 7. Similar molecules have been isolated from Pseudomonas aeruginosa 8, A. chroococcum 9 and from Nitrobacter winogradskyi 10 Despite their resemblance to ferritin, the physiological role of these molecules in bacteria has not been established, but in vitro they are able to sequester iron11.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-1-4615-3810-3_32

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bragg and J.B. Neilands, Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport Operon in Escherichia coli, Biochemistry 26:5471–5477 (1987).

    Article  Google Scholar 

  2. R.B. Gennis, The cytochromes of Escherichia coli, FEMS Microbiol. Rev. 46:387–399 (1987).

    Article  CAS  Google Scholar 

  3. E.I. Stiefel and G.D. Watt, Azotobacter cytochrome b 557 5 is a bacterioferritin, Nature London 279:81–83 (1979).

    Article  PubMed  CAS  Google Scholar 

  4. J. Yariv, A.J. Kalb, R. Sperling, E.R. Bauminger, S. G. Cohen and S. Ofer, The composition and the structure of bacterioferritin of Escherichia coli, Biochem. J. 197:171–175 (1981).

    PubMed  CAS  Google Scholar 

  5. W.A. Bulen, J.R. LeComte and S. Lough, A hemoprotein from Azotobacter containing non-heme iron: Isolation and crystallization, Biochem. Biophys. Res. Commun. 54:1274–1281 (1973).

    Article  PubMed  CAS  Google Scholar 

  6. S.S. Deeb and L.P. Hager, Crystalline cytochrome b 1 from Escherichia coli, J. Biol. Chem. 239:1024–1031 (1964).

    PubMed  CAS  Google Scholar 

  7. T. Fujita, E. Itagaki and R. Sato, Purification and properties of cytochrome b1 from Escherichia coli, J. Biol. Chem. 53:282–290 (1963).

    CAS  Google Scholar 

  8. G.R. Moore, S. Mann and J.V. Bannister, Isolation and properties of the complex nonheme-iron-containing cytochrome b 557 (bacterioferritin) from Pseudomonas aeruginosa, J. Inorg. Biochem. 28:329–336 (1986).

    Article  PubMed  CAS  Google Scholar 

  9. M. Chen and R.R. Crichton, Purification and characterisation of a bacterioferritin from Azotobacter chroococcum, Biochim. Biophys. Acta 707:1–6 (1982).

    Article  CAS  Google Scholar 

  10. T. Kurokawa, Y. Fukumori and T. Yamanata, Nitrobacter winogradskyi cytochrome b 559: a nonhaem iron-containing cytochrome related to bacterioferritin, Biochim. Biophvs. Acta 976:135–139 (1989).

    Article  CAS  Google Scholar 

  11. S. Mann, J.M. Williams, A. Treffry and P.M. Harrison, Reconstituted and native iron-cores of bacterioferritin and ferritin, J. Mol. Biol. 198:405–416 (1987).

    Article  PubMed  CAS  Google Scholar 

  12. S.C. Andrews, J.M.A. Smith, J.R. Guest and P.M. Harrison, Amino acid sequence of the bacterioferritin (cytochrome b 1) of Escherichia coli K12, Biochem. Biophys. Res. Comm. 158:489–496 (1989).

    Article  PubMed  CAS  Google Scholar 

  13. S.C. Andrews, P.M. Harrison and J.R. Guest, Cloning, sequencing and mapping of the bacterioferritin gene (bfr) of Escherichia coli J. Bacteriol. 171:3940–3947 (1989).

    PubMed  CAS  Google Scholar 

  14. J.M.A. Smith, G.C. Ford and P.M. Harrison, Very-low-resolution structure of a bacterioferritin, Biochem. Soc. Trans. 16:836–838 (1988).

    CAS  Google Scholar 

  15. J.M.A. Smith, G.C. Ford, P.M. Harrison, J. Yariv and A.J. Kalb (Gilboa), Molecular size and symmetry of the bacterioferritin of Escherichia coli, J. Mol. Biol. 205:465–467 (1989).

    Article  PubMed  CAS  Google Scholar 

  16. J.M.A. Smith, S.C. Andrews, J.R. Guest and P.M. Harrison, Multiple isomorphous replacement: A genetic engineering approach to the generation of heavy atom derivatives. Biochem. Soc. Trans. 18:in press (1990).

    Google Scholar 

  17. G.C. Ford, P.M. Harrison, D.W. Rice, J.M.A. Smith, A. Treffry, J.L. White and J. Yariv, Ferritin: design and formation of an iron storage molecule, Phil. Trans. Roy. Soc. Lond. B304:551–565 (1984).

    Google Scholar 

  18. F. Scott Matthews, The structure, function and evolution of cytochromes, Progr. Biophys. Molec. Biol. 45:1–56 (1985).

    Article  Google Scholar 

  19. P.C. Weber and F.R. Salemme, Structural and functional diversity in 4-alpha-helical proteins, Nature Lond. 287:83–84 (1980).

    Article  Google Scholar 

  20. S.C. Andrews, J.M.A. Smith, J.R. Guest and P.M. Harrison, Genetic and structural characterization of the bacterioferritin of Escherichia coli, Biochem. Soc. Trans. (1990) 18:in press.

    Google Scholar 

  21. J.M.A. Smith, R.F.D. Stansfield, G.C. Ford, J.L. White and P.M. Harrison, A molecular model for the quaterinary structure of ferritin, J. Chem. Education 65:1083–1084 (1988).

    Article  CAS  Google Scholar 

  22. P.M. Harrison, The structures of ferritin and apoferritin: some preliminary X-ray data, J. Mol. Biol. 1:69–80 (1959).

    Article  CAS  Google Scholar 

  23. F.A. Fischbach, P.M. Harrison and T.G. Hoy, The structural relationship between ferritin protein and its mineral core, J. Mol. Biol. 39:235–238 (1969).

    Article  PubMed  CAS  Google Scholar 

  24. E.R. Bauminger, S.C. Cohen, D.P.E. Dickson, A. Levy, S. Ofer and J. Yariv, Mossbauer spectroscopy of Escherichia coli and its iron-storage protein, Biochim. Biophys. Acta 623:237–242 (1980).

    Article  PubMed  CAS  Google Scholar 

  25. T.G. St. Pierre, S.H. Bell, D.P.E. Dickson, S. Mann, J. Webb, G.R. Moore and R.J.P. Williams, Mossbauer spectroscopic studies of the cores of human, limpet and bacterial ferritins, Biochim. Biophys. Acta 870:127–134 (1986).

    Article  Google Scholar 

  26. A. Blaise, J. Chappert and J.-L. Girardet, Observation par measures magnetiques et effet Mossbauer d’un antiferromagnetisme de grains fins dans la ferritine, C.R. Acad. Sci. Paris 261:2310–2313 (1965).

    Google Scholar 

  27. S. Mann, J.V. Bannister, and R.J. Williams, Structure and function of ferritin iron cores isolated from human spleen, limpet (Patella vulgata) haemolymph and bacterial (Pseudomonas aeruginosa) cells, J. Mol. Biol. 188:225–232 (1986).

    Article  PubMed  CAS  Google Scholar 

  28. G.D. Watt, R.B. Frankel and G.C. Papaefthymiou, Redox properties and Mossbauer spectroscopy of Azotohacter vinelandii bacterioferritin, Biochemistry 25:4330–4336 (1986).

    Article  CAS  Google Scholar 

  29. J.M. Williams, D.P. Janson and C.H.R. Janot, A Mossbauer determination of the iron core particle size distribution in ferritin, Phys. Med. Biol. 23:835–851 (1978).

    Article  PubMed  CAS  Google Scholar 

  30. A. Treffry and P.M. Harrison, Incorporation and release of inorganic phosphate in horse spleen ferritin, Biochem. J. 171:313–320 (1978).

    CAS  Google Scholar 

  31. S. Mann, J.M. Williams, A. Treffry and P.M. Harrison, Reconstituted and native iron-cores of bacterioferritin and ferritin, J. Mol. Biol. 198:405–416 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, J.M.A., Andrews, S.C., Guest, J.R., Harrison, P.M. (1991). Bacterioferritin: A Microbial Iron-Storage Protein?. In: Frankel, R.B., Blakemore, R.P. (eds) Iron Biominerals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3810-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3810-3_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6699-7

  • Online ISBN: 978-1-4615-3810-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics