Skip to main content

Iron Mineralization by Bacteria: Metabolic Coupling of Iron Reduction to Cell Metabolism in Alteromonas Putrefaciens Strain MR-1

  • Chapter
Iron Biominerals

Abstract

Because of the high redox potential of Fe(III), the rapidity with which Fe(III) and Fe(II) can be interconverted, and the abundance of iron in many soil and sedimentary environments, iron oxides and oxyhydroxides have a great potential for interacting with both organisms and the chemical environment. Not only is Fe(III) the most abundant electron acceptor in most soils (Ponnamperuma, 1972), but it is second only to sulfate as the most abundant electron acceptor in marine sediments (Reeburgh, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, R. G., DiChristina, T. J., and Hoffmann, M. R., 1986, Inhibitor studies of dissimilative Fe(III) reduction by Pseudomonas sp. Strain 200 (“Pseudomonas ferrireductans”), Appl. Environ. Microbiol., 52:281.

    PubMed  CAS  Google Scholar 

  • Balashova, V. V., and Zavarzin, G. A., 1980, Anaerobic reduction of ferric iron by hydrogen bacteria, Microbiology U.S.S.R, 48:635.

    Google Scholar 

  • Beijerinck, M. W., 1913, Oxydation des manganbikarbonates durch bakterein und schimmelpilze, Folia Microbiol. (Delft) 2:123.

    Google Scholar 

  • Bell, P. E., Mills, A. L., and Herman, J. S., 1987, Biogeochemical conditions favoring magnetite formation during anaerobic iron reduction, Appl. Environ. Microbiol., 53:2610.

    PubMed  CAS  Google Scholar 

  • Berner, R. A., 1964, Iron sulfides formed from aqueous solution at low temperature and atmospheric pressure, J. Geol., 72:293.

    Article  CAS  Google Scholar 

  • Burdige, D. J., and Nealson, K. H., 1985, Microbial manganese reduction by enrichment cultures from coastal marine sediments, Appl. Environ. Microbiol., 50:491.

    PubMed  CAS  Google Scholar 

  • Burdige, D. J., and Nealson, K. H., 1986, Chemical and microbiological studies of sulfide-mediated manganese reduction, Geomicrobiol. J., 4:361.

    Article  CAS  Google Scholar 

  • Carlton, B. C., and Brown, B. J., 1981, Gene mutation, in “Manual of Methods for General Bacteriology,” P. Gerhardt et al., ed., American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Cox, C. D., 1980, Iron reductases from Pseudomonas aeruginosa, J. Bacteriol., 141:199.

    PubMed  CAS  Google Scholar 

  • Daily, H. A., and Lascelles, J., 1977, Reduction of iron and synthesis of protoheme by Spirillum itersonii and other organisms, J. Bacteriol., 129:815.

    Google Scholar 

  • DeCastro, A. F., and Ehrlich, H. L., 1970, Reduction of iron oxide minerals by a marine Bacillus, Ant. van Leeuwenhoek J. Microbiol. Serol., 36:317.

    Article  CAS  Google Scholar 

  • Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V., 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Acta, 43:1075.

    Article  CAS  Google Scholar 

  • Ghiorse, W. C., 1988, Microbial reduction of manganese and iron, in “Biology of Anaerobic Microorganisms,” A. J. B. Zehnder, ed., Wiley, New York.

    Google Scholar 

  • Goldhaber, M. B., and Kaplan, I. R., 1974, The sulfur cycle, in “The Sea,” vol. 5, E. O. Goldberg, ed., Wiley, New York.

    Google Scholar 

  • Gottschalk, G., 1986, “Bacterial Metabolism,” 2nd edition, Springer-Verlag, New York.

    Book  Google Scholar 

  • Henrichs, S. M., and Reeburgh, W. S., 1987, Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy, Geomicrobiol. J., 5:191.

    Article  CAS  Google Scholar 

  • Hugh, R., and Gilardi, G. L., 1980, Pseudomonas, in “Manual of Clinical Microbiology,” 3rd edition, E. H. Lennette et al., ed., American Society for Microbiology, Washington, D. C.

    Google Scholar 

  • Hungate, R. E., 1969, A roll tube method for cultivation of strict anaerobes, Methods Microbiol., 3B:117.

    Article  CAS  Google Scholar 

  • Jones, J. G., 1983, A note on the isolation and enumeration of bacteria which deposit and reduce ferric iron, J. Appl. Bacteriol., 54:305.

    Article  Google Scholar 

  • Jones, J. G., Gardener, S., and Simon, B. M., 1983, Bacterial reduction of ferric iron in a stratified eutrophic lake, J. Gen. Microbiol., 129:131.

    CAS  Google Scholar 

  • Jones, J. G., Davison, W., and Gardener, S., 1984a, Iron reduction by bacteria: range of organisms involved and metals reduced, FEMS Microbiol. Lett., 21:133.

    Article  CAS  Google Scholar 

  • Jones, J. G., Gardener, S., and Simon, B. M., 1984b, Reduction of ferric iron by heterotrophic bacteria in lake sediments, J. Gen. Microbiol., 130:45.

    CAS  Google Scholar 

  • Karlin, R., and Levi, S., 1983, Diagenesis of magnetic minerals in recenthemipelagic sediments, Nature, 303:327.

    Article  CAS  Google Scholar 

  • Konings, W. N., and Boonstra, J., 1977, Anaerobic electron transfer and active transport in bacteria, Curr. Top. Membr. Transp., 9:177.

    Article  CAS  Google Scholar 

  • LaKind, J. S., and Stone, A. T., 1989, Reductive dissolution of goethite and hematite, Geochim. Cosmochim. Acta, 53:961.

    Article  CAS  Google Scholar 

  • Lascelles, J., and Burke, K. A., 1978, Reduction of ferric iron by L-lactate and DL-glycerol-3-phosphate in membrane preparations from Staphylococcus aureus and interactions with the nitrate reductase system, J. Bacteriol., 134:585.

    PubMed  CAS  Google Scholar 

  • Lin, E. C. C., and Kuritzkes, D. R., 1987, Pathways for anaerobic electron transport, inEscherichia coli and Salmonella typhimurium: Cellular and Molecular Biology,” volume 1, F. C. Neidhardt et al., ed., American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Lovley, D. R., 1987, Organic matter mineralization with the reduction of ferric iron: a review, Geomicrobiol. J., 5:375.

    Article  CAS  Google Scholar 

  • Lovley, D. R., Baedecker, M. J., Lonergan, D. J., Cozzarelli, I. M., Phillips, E. J. P., and Siegel, D. I., 1989a, Oxidation of aromatic contaminants coupled to microbial iron reduction, Nature, 339:297.

    Article  CAS  Google Scholar 

  • Lovley, D. R., and Phillips, E. J. P., 1986a, Organic matter mineralization with reduction of ferric iron in anaerobic sediments, Appl. Environ. Microbiol., 51:683.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and Phillips, E. J. P., 1986b, Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac River, Appl. Environ. Microbiol., 52:751.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and Phillips, E. J. P., 1987a, Rapid assay for microbially reducible ferric iron in aquatic sediments, Appl. Environ. Microbiol., 53:1536.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and Phillips, E. J. P., 1987b, Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments, Appl. Environ. Microbiol., 53:2636.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., and Phillips, E. J. P., 1988, Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese, Appl. Environ. Microbiol., 54:1472.

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., Phillips, E. J. P., and Lonergan, D. J., 1989b, Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens, Appl. Environ. Microbiol., 55:700.

    CAS  Google Scholar 

  • Lovley, D. R., Stolz, J. F., Nord, G. L., Jr., and Phillips, E. J. P., 1987, Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism, Nature, 330:252.

    Article  CAS  Google Scholar 

  • Miller, T. L., and Wolin, M. J., 1974, A serum bottle modification of the Hungate technique for cultivating obligate anaerobes, Appl. Microbiol., 27:985.

    PubMed  CAS  Google Scholar 

  • Moraghan, J. T., and Buresh, R. J., 1977, Chemical reduction of nitrite and nitrous oxide by ferrous iron, Soil. Sci. Soc. Am. J., 41:47.

    Article  CAS  Google Scholar 

  • Munch, J. C., and Ottow, J. C. G., 1980, Preferential reduction of amorphous crystalline iron oxides by bacterial activity, Soil Sci., 129:15.

    Article  CAS  Google Scholar 

  • Munch, J. C., and Ottow, J. C. G., 1983, Reductive transformation mechanism of ferric oxides in hydromorphic soils, Ecol. Bull .(Stockholm), 35:383.

    CAS  Google Scholar 

  • Myers, C. R., and Nealson, K. H., 1988a, Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor, Science, 240:1319.

    Article  PubMed  CAS  Google Scholar 

  • Myers, C. R., and Nealson, K. H., 1988b, Microbial reduction of manganese oxides: interactions with iron and sulfur, Geochim. Cosmochim. Acta, 52:2727.

    Article  CAS  Google Scholar 

  • Myers, C. R., and Nealson, K. H., 1989, Proton translocation associated with respiratory reduction of manganese(IV) and iron(III) by Alteromonas putrefaciens, Abstracts of the Annual Meeting of the American Society for Microbiology, p. 233.

    Google Scholar 

  • Nealson, K. H., 1983, The microbial iron cycle, in “Microbial Geochemistry,” W. E. Krumbein, ed., Blackwell, Oxford.

    Google Scholar 

  • Nealson, K. H., Rosson, R. A., and Myers, C. R., 1989, Mechanisms of oxidation and reduction of manganese, in “Metal Ions and Bacteria,” T. J. Beveridge and R. J. Doyle, ed., Wiley, New York.

    Google Scholar 

  • Neilands, J. B., 1984, Siderophores of bacteria and fungi, Microbiol. Sci., 1:9.

    PubMed  CAS  Google Scholar 

  • Niven, D. F., and MacLeod, R. A., 1980, Sodium ion-substrate symport in a marine bacterium, J. Bacteriol. 142:603.

    PubMed  CAS  Google Scholar 

  • Obuekwe, C. O., and Westlake, D. W. S., 1982, Effects of medium composition on cell pigmentation, cytochrome content, and ferric iron reduction in a Pseudomonas sp. isolated from crude oil, Can. J. Microbiol., 28:989.

    Article  PubMed  CAS  Google Scholar 

  • Obuekwe, C. O., Westlake, D. W. S., and Cook, F. D., 1981, Effect of nitrate on reduction of ferric iron by a bacterium isolated from crude oil, Can. J. Microbiol., 27:692.

    Article  PubMed  CAS  Google Scholar 

  • Ottow, J. C. G., 1970, Selection, characterization and iron-reducing capacity of nitrate reductaseless (nit-) mutants of iron-reducing bacteria, Z. Allg. Mikrobiol., 10:55.

    Article  PubMed  CAS  Google Scholar 

  • Paoletti, L. C., and Blakemore, R. P., 1988, Iron reduction by Aquaspirillum magnetotacticum, Curr. Microbiol., 17:339.

    Article  CAS  Google Scholar 

  • Parker, L. L., and Levin, R. E., 1983, Relative incidence of Alteromonas putrefaciens and Pseudomonas putrefaciens in ground beef, Appl. Environ. Microbiol., 45:796.

    PubMed  CAS  Google Scholar 

  • Ponnamperuma, F. N., 1972, The chemistry of submerged soils, Adv. Agron., 24:29.

    Article  CAS  Google Scholar 

  • Postma, D., 1985, Concentration of Mn and separation from Fe in sediments — I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10°C, Geochim. Cosmochim. Acta, 49:1023.

    Article  CAS  Google Scholar 

  • Reeburgh, W. S., 1983, Rates of biogeochemical processes in anoxic sediments, Ann. Rev. Earth Planet. Sci., 11:269.

    Article  CAS  Google Scholar 

  • Ringo, E., Stenberg, E., and Strøm, A. R., 1984, Amino acid and lactate catabolism in trimethy1amine oxide respiration of Alteromonas putrefaciens NCMB 1735, Appl. Environ. Microbiol., 47:1084.

    PubMed  CAS  Google Scholar 

  • Roberts, J. L., 1947, Reduction of ferric hydroxide by strains of Bacillus polymyxa, Soil Sci., 63:135.

    Article  CAS  Google Scholar 

  • Samuelsson, M., 1985, Dissimilatory nitrate reduction to nitrite, nitrous oxide and ammonium by Pseudomonas putrefaciens, Appl. Environ. Microbiol., 50:812.

    PubMed  CAS  Google Scholar 

  • Samuelsson, M.-O, Cadez, P., and Gustafsson, L., 1988, Heat production by the denitrifying bacterium Pseudomonas fluorescens and the dissimilatory ammonium-producing bacterium Pseudomonas putrefaciens during anaerobic growth with nitrate as the electron acceptor, Appl. Environ. Microbiol., 54:2220.

    PubMed  CAS  Google Scholar 

  • Scholes, P., and Mitchell, P., 1970, Respiration-driven proton translocation in Micrococcus denitrificans, J. Bioenerg., 1:309.

    Article  CAS  Google Scholar 

  • Schwertmann, U., and Taylor, R. M., 1977, Iron oxides, in “Minerals in Soil Environments,” J. B. Dixon and S. B. Weed, ed., Soil Science Society of America, Madison, WI.

    Google Scholar 

  • Semple, K. M., and Westlake, D. W. S., 1987, Characterization of iron-reducing Alteromonas putrefaciens strains from oil fluid fields, Can. J. Microbiol,. 33:366.

    Article  CAS  Google Scholar 

  • Short, K. A., and Blakemore, R. P., 1986, Iron-respiration driven proton translocation in aerobic bacteria, J. Bacteriol., 167:729.

    PubMed  CAS  Google Scholar 

  • Sørensen, J., 1982, Reduction of ferric iron in anaerobic, marine sediment and interaction with the reduction of nitrate and sulfate, Appl. Environ. Microbiol., 43:319.

    PubMed  Google Scholar 

  • Sprott, G. D., Drozdowski, J. P., Martin, E. L., and MacLeod, R. A., 1975, Kinetics of Na+-dependent amino acid transport using cells and membrane vesicles of a marine pseudomonad, Can. J. Microbiol., 21:43.

    Article  PubMed  CAS  Google Scholar 

  • Sprott, G. D., and MacLeod, R. A., 1972, Na+-dependent amino acid transport in isolated membrane vesicles of a marine pseudomonad energized by electron donors, Biochem. Biophys. Res. Commun., 47:838.

    Article  PubMed  CAS  Google Scholar 

  • Stenberg, E., Ringo, E., and Strøm, A. R., 1984, Trimethy1amine oxide respiration of Alteromonas putrefaciens NCMB 1735: Na+-stimulated anaerobic transport in cells and membrane vesicles, Appl. Environ. Microbiol., 47:1090.

    PubMed  CAS  Google Scholar 

  • Stumm, W., and Morgan, J. J., 1981, “Aquatic Chemistry,” 2nd edition, Wiley-Interscience, New York.

    Google Scholar 

  • Thauer, R. K., Jungermann, K., and Dekker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev., 41:100.

    PubMed  CAS  Google Scholar 

  • Tugel, J. B., Hines, M. E., and Jones, G. E., 1986, Microbial iron reduction by enrichment cultures isolated from estuarine sediments, Appl. Environ. Microbiol., 52:1167.

    PubMed  CAS  Google Scholar 

  • Van Verseveld, H. W., Krab, K., and Stouthamer, A. H., 1981, Proton pump coupled to cytochrome c oxidase in Paracoccus denitrificans, Biochim. Biophys. Acta, 635:525.

    Article  PubMed  Google Scholar 

  • Wedepohl, K. H., 1971, “Geochemistry,” Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Williams, H. D., and Poole, R. K., 1987, Reduction of iron(III) by Escherichia coli K12: lack of involvement of the respiratory chains, Curr. Microbiol., 15:319.

    Article  CAS  Google Scholar 

  • Yamamoto, I., and Ishimoto, M., 1981, Oxidation of lactate in comparison with that of glucose in nitrate respiration of Escherichia coli, J. Gen. Appl. Microbiol., 27:11.

    Article  CAS  Google Scholar 

  • Yoshida, T., 1975, Microbial metabolism of flooded soils, in “Soil Biochemistry,” vol. 3, E. A. Paul and A. D. McLaren, ed., Marcell Dekker, Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Myers, C.R., Nealson, K.H. (1991). Iron Mineralization by Bacteria: Metabolic Coupling of Iron Reduction to Cell Metabolism in Alteromonas Putrefaciens Strain MR-1. In: Frankel, R.B., Blakemore, R.P. (eds) Iron Biominerals. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3810-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3810-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6699-7

  • Online ISBN: 978-1-4615-3810-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics