Skip to main content

New Developments in Thrombolytic Therapy

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 281))

Summary

Thrombotic complications of cardiovascular disease are a main cause of death and disability and, consequently, thrombolysis could favorably influence the outcome of such life-threatening diseases as myocardial infarction, cerebrovascular thrombosis and venous thromboembolism.

Thrombolytic agents are plasminogen activators that convert plasminogen, the inactive proenzyme of the fibrinolytic system in blood, to the proteolytic enzyme plasmin. Plasmin dissolves the fibrin of a blood clot, but may also degrade normal components of the hemostatic system and predispose to bleeding. Currently, five thrombolytic agents are either approved for clinical use or under clinical investigation in patients with acute myocardial infarction. These include streptokinase, urokinase, recombinant tissue-type plasminogen activator (rt-PA), anisoylated plasminogen streptokinase activator complex (APSAC) and single chain urokinase-type plasminogen activator (scu-PA, prourokinase). The first generation thrombolytic agents, streptokinase (and probably also urokinase), are only moderately efficacious and their administration is associated with extensive systemic fibrinogen breakdown. In comparative studies performed in patients with acute myocardial infarction, recombinant tissue-type plasminogen activator (rt-PA) is a more effective and fibrin-specific thrombolytic agent than streptokinase. The acylated plasminogen streptokinase activator complex (APSAC) has a profile of thrombolytic efficacy and fibrin-specificity that is similar or somewhat better than that of streptokinase, but has the advantage that it can be administered by bolus injection. Single chain urokinase-type plasminogen activator is more fibrin-specific than urokinase. Comparative data on the efficacy and safety of this agent are limited as it is in the early stage of clinical investigation.

Reduction of infarct size, preservation of ventricular function and/or reduction in mortality has been observed with streptokinase, rt-PA and APSAC. Therefore, thrombolytic therapy will probably become routine therapy for early acute myocardial infarction.

In patients with acute myocardial infarction, intravenous streptokinase recanalizes 40–45 percent of occluded coronary arteries and reduces mortality by 25 percent; it costs approximately $200 for a therapeutic dose of 1,500,000 units. Recombinant tissue-type plasminogen activator (rt-PA) is more potent for coronary arterial thrombolysis, producing both more rapid and more frequent (65–70 percent) reperfusion, but it costs over $1,000 for a therapeutic dose of 100 mg. Side effects (mainly bleeding) and the incidence of reocclusion associated with the use of streptokinase and rt-PA are not markedly different. Whether the higher efficacy of rt-PA will translate into a comparably larger reduction of mortality remains to be determined in large comparative clinical trials. Both agents are available for clinical use. The choice of agent for the treatment of acute myocardial infarction at present must be based on considerations of lower cost of streptokinase versus the higher efficacy for coronary recanalization of rt-PA.

Recent reviews of thrpmbolytic agents have reached apparently contradictory conclusions with respect to the comparative properties of thrombolytic agents (1–3). In particular, the data on the relative efficacy for coronary thrombolysis, the speed of reperfusion, the frequency of reocclusion, the occurrence of bleeding complications, and the impact on mortality have been presented and interpreted differently.

All available thrombolytic agents still suffer significant shortcomings, including the need for large doses to be therapeutically efficient, a limited fibrin-specificity and residual toxicity in terms of bleeding complications. New developments towards further improved efficacy and fibrin-specificity of thrombolytic therapy include the use of combinations of synergistic thrombolytic agents, mutants of t-PA and scu-PA, chimeric t-PA/scu-PA molecules, antibody-targeted thrombolytic agents, and/or combinations of fibrin-dissolving agents with anti-platelet strategies.

In this communication, we will briefly review the components of the fibrinolytic system, the mechanism of fibrin-specific thrombolysis, the present state of clinical trials with thrombolytic agents in acute myocardial infarction, and finally, new trends in thrombolytic therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Collen, D. C. Stump, H. K. Gold, Thrombolytic therapy. Ann. Rev. Med., 39:405–423 (1988).

    Article  PubMed  CAS  Google Scholar 

  2. V. J. Marder, S. Sherry, Thrombolytic therapy: current status (first of two parts). N. Engl. J. Med., 318:1512–1520 (1988).

    Article  PubMed  CAS  Google Scholar 

  3. V. J. Marder, S. Sherry, Thrombolytic therapy: current status (second of two parts). N. J. Engl. Med., 318:1585–1595 (1988).

    Article  CAS  Google Scholar 

  4. D. Collen, On the regulation and control of fibrinolysis. Thromb. Haemost., 43:77–89 (1980).

    PubMed  CAS  Google Scholar 

  5. D. Collen, Molecular mechanisms and clinical applications of thrombolysis. Les Cahiers de la Fondation Louis Jeantet de Médicine, 1:41–54 (1986).

    Google Scholar 

  6. F. Bachmann. Fibrinolysis, in: Thrombosis and Haemostasis. Eds: M Verstraete, J. Vermylen, R. Lijnen, J. Arnout, Leuven University Press, Leuven, Belgium, p. 227–265 (1987).

    Google Scholar 

  7. M. A. De Wood, J. Spores, R. Notske, et al., Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N. Engl. J. Med., 303:897–902 (1980).

    Article  Google Scholar 

  8. K. P. Rentrop, Thrombolytic therapy in patients with acute myocardial infarction. Circulation, 71:627–631 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. Gruppo Italiano per lo studio della streptochinasi nell’infarto, miocardico (GISSI). Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet, 1:397–402 (1986).

    Google Scholar 

  10. F. Rovelli, C. De Vita, G. A. Feruglio, et al., GISSI trial: early results and late follow up. J. Am. Coll. Cardiol., 10:33B–39B (1987).

    Article  PubMed  CAS  Google Scholar 

  11. M. L. Simoons, M. van de Brand, C. de Zwaan, et al., Improved survival after early thrombolysis in acute myocardial infarction. Lancet, 2:578–581 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. The ISAM Study Group, A prospective trial of intravenous streptokinase in acute myocardial infarction (I.S.A.M.). Mortality, morbidity, and infarct size at 21 days. N. Engl. J. Med.,314:1465–1471 (1986).

    Article  Google Scholar 

  13. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group, Randomized trial of intravenous streptokinase, oral aspirin, both or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2, Lancet, 2:349–360 (1988).

    Google Scholar 

  14. J. W. Kennedy, G. V. Martin, and K. B. Davis, et al., The Western Washington intravenous streptokinase in acute myocardial infarction randomized trial. Circulation,77:345–352 (1988).

    Article  PubMed  CAS  Google Scholar 

  15. H. D. White, R. M. Norris, and M. A. Brown, et al., Effect of intravenous streptokinase on left ventricular function and early survival after acute myocardial infarction. N. Engl. J. Med., 317:850–855 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. D. Collen, Human tissue-type plasminogen activator: from the laboratory to the bedside Circulation, 72:18–20 (1985).

    Article  PubMed  CAS  Google Scholar 

  17. A. D. Guerci, G. Gerstenblith, and J. A. Brinker, et al., A randomized trial of intravenous tissue plasminogen activator for acute myocardial infarction with subsequent randomization to elective coronary angioplasty. N. Engl. J. Med., 317:1613–1618 (1987).

    Article  PubMed  CAS  Google Scholar 

  18. M. O’Rourke, D. Baron, and A. Keogh, et al., Limitation of myocardial infarction by early infusion of recombinant tissue-type plasminogen activator. Circulation, 77:1311–1315 (1988).

    Article  PubMed  Google Scholar 

  19. F. van de Werf, A. E. R. Arnold, Intravenous tissue plasminogen activator and size of infarct, left ventricular function, and survival in acute myocardial infarction. Br. Med. J., 297:1374–1379 (1988).

    Article  Google Scholar 

  20. R. G. Wilcox, G. von der Lippe, C. G. Olsson, G. Jenssen, A. M. Skene, and J. R. Hampton, Trial of tissue plasminogen activator (rt-PA) for mortality reduction in acute myocardial infarction: The Anglo-Scandinavian study of early thrombolysis (ASSET). Lancet, 2:525–530 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. E. Braunwald, G. L. Knatterud, E. Passamani, T. L. Robertson, and R. Solomon, Update from the thrombolysis in myocardial infarction trial. J. Am. Coll. Cardiol., 10:970 (1987).

    Article  PubMed  CAS  Google Scholar 

  22. M. L. Brochier, L. Quillet, and H. Kulbertus, et al., Intravenous anisoylated plasminogen streptokinase activator complex versus intravenous streptokinase in evolving myocardial infarction. Drugs 3, (Suppl 3):140–145 (1987).

    Article  Google Scholar 

  23. J. L. Anderson, R. L. Rothbard, and R. A. Hackworthy, et al., Multicenter reperfusion trial of intravenous anisoylated plasminogen streptokinase activator complex (APSAC) in acute myocardial infarction: Controlled comparison with intracoronary streptokinase. J. Am. Coll. Cardiol., 11:1153–1163 (1988).

    Article  PubMed  CAS  Google Scholar 

  24. AIMS Trial Study Group. Effect of intravenous APSAC on mortality after acute myocardial infarction: preliminary report of a placebo-controlled clinical trial. Lancet, 1:545–549 (1988).

    Google Scholar 

  25. S. Sherry, Appraisal of various thrombolytic agents in the treatment of acute myocardial infarction. Am. J. Med. 83 Suppl. 2A:31–46 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. K. P. Rentrop, F. Feit, and H. Blanke, et al., Effects of intracoronary streptokinase and intracoronary nitroglycerin infusion on coronary angiographic patterns and mortality in patients with acute myocardial infarction. N. Engl. J. Med., 311:1457–1463 (1984).

    Article  PubMed  CAS  Google Scholar 

  27. K. L. Neuhaus, U. Tebbe, G. Sauer, G. Rahlf, H. Kreuzer, and H. Kostering. Hochdosierte intravenose Kurzinfusion von Streptokinase beim acuten Myocardinfarkt, in: G. Trübestein, F. Etzel, eds. Fibrinolytische Therapie. FK Schattauer Verlag Stuttgart/New York, 475–480 (1983).

    Google Scholar 

  28. R. Schröder, G. Biamino, and E. R. Leitner, et al., Intravenous short-term infusion of streptokinase in acute myocardial infarction. Circulation, 67:536–548 (1983).

    Article  PubMed  Google Scholar 

  29. W. J. Rogers, J. A. Mantle, and W. P. Hood, et al., Prospective randomized trial of intravenous and intracoronary streptokinase in acute myocardial infarction. Circulation, 68:1051–1061 (1983).

    Article  PubMed  CAS  Google Scholar 

  30. E. L. Alderman K. R. Jutzy, and L. E. Berte, et al., Randomized comparison of intravenous versus intracoronary streptokinase for myocardial infarction. Am. J. Cardiol., 54:14–19 (1984).

    Article  PubMed  CAS  Google Scholar 

  31. J. R. Spann, S. Sherry, and B. A. Carabello, et al., Coronary thrombolysis by intravenous streptokinase in acute myocardial infarction: acute and follow-up studies. Am. J. Cardiol., 53:655–661 (1984).

    Article  PubMed  CAS  Google Scholar 

  32. L. D. Hillis, J. Borer, and E. Braunwald, et al., High dose intravenous streptokinase for acute myocardial infarction: preliminary results of a multicenter trial. J. Am. Coll. Cardiol., 6:957–962 (1985).

    Article  PubMed  CAS  Google Scholar 

  33. The TIMI Study Group, Special Report. The thrombolysis in myocardial infarction (TIMI) trial. N. Engl. J. Med., 312:932–936 (1985).

    Google Scholar 

  34. M. de Marneffe, E. Van Thiel, and M. Ewalenko, et al., High-dose intravenous thrombolytic therapy in acute myocardial infarction: efficiency, tolerance, complications and influence on left ventricular performance. Acta. Cardiol., 40:183–198 (1985).

    PubMed  Google Scholar 

  35. D. Collen E. J. Topol, and A. J. Tiefenbrunn, et al., Coronary thrombolysis with recombinant human tissue-type plasminogen activator: a prospective, randomized, placebo-controlled trial. Circulation, 70:1012–1017 (1984).

    Article  PubMed  CAS  Google Scholar 

  36. D. O. Williams, J. Borer, and E. Braunwald, et al., Intravenous recombinant tissue-type plasminogen activator in patients with acute myocardial infarction: a report from the NHLBI thrombolysis in myocardial infarction trial. Circulation, 73:338–346 (1986).

    Article  PubMed  CAS  Google Scholar 

  37. H. K. Gold, R. C. Leinbach, and H. D. Garabedian, et al., Acute coronary reocclusion after thrombolysis with recombinant human tissue-type plasminogen activator: prevention by a maintenance infusion. Circulation, 73:347–352 (1986).

    Article  PubMed  CAS  Google Scholar 

  38. H. S. Mueller, A. K. Rao, and S. A. Forman., Thrombolysis in myocardial infarction (TIMI): comparative studies of coronary reperfusion and systemic fibrinogenolysis with two forms of recombinant tissue-type plasminogen activator. J. Am. Coll. Cardiol., 10:479–490 (1987).

    Article  PubMed  CAS  Google Scholar 

  39. H. J. R. M. Bonnier, R. F. Visser, H. C. Klomps, and H. J. M. L. Hoffmann, Comparison of intravenous anisoylated plasminogen streptokinase activator complex and intracoronary streptokinase in acute myocardial infarction. Am. J. Cardiol., 62:2530 (1988).

    Article  Google Scholar 

  40. P. Dewilde, Y. Taeymans, D. Demoor, L. Huygehens, and P. Block, Intravenous thrombolysis with BRL 26921 in acute myocardial infarction. Presented at the International Symposium on Cardiovascular Pharmacotherapy, Geneva, (1985) Abstract 96.

    Google Scholar 

  41. V. J. Marder, R. L. Rothbard, P. G. Fitzpatrick, and C. W. Francis, Rapid lysis of coronary artery thrombi with anisoylated plasminogen: streptokinase activator complex. Treatment by bolus intravenous injection. Ann. Intern. Med., 104:304–310 (1986).

    PubMed  CAS  Google Scholar 

  42. A. D. Timmis, B. Griffin, J. C. P. Crick, J. S. Flax, and E. Sowton, An interim report of a double-blind placebo controlled recanalisation study of anisoylated plasminogen streptokinase activator complex in acute myocardial infarction. Drugs, 33 (Suppl 3):14650 (1987).

    Article  Google Scholar 

  43. G. J. Taylor, F. L. Mike11, and H. W. Moses, et al., Intravenous versus intracoronary streptokinase therapy for acute myocardial infarction in community hospitals. Am. J. Cardiol., 54:256–260 (1984).

    Article  PubMed  CAS  Google Scholar 

  44. F. Schwartz, M. Hofmann, G. Schuler, K. von Olshausen, R. Zimmermann, and W. Kübler, Thrombolysis in acute myocardial infarction: effect of intravenous followed by intracoronary streptokinase application on estimates of infarct size. Am. J. Cardiol., 53:1505–1510 (1984).

    Article  Google Scholar 

  45. M. Verstraete, R. Bernard, and M. Bory, et al., Randomised trial of intravenous recombinant tissue-type plasminogen activator versus intravenous streptokinase in acute myocardial infarction. Lancet, 1:842–847 (1985).

    Article  PubMed  CAS  Google Scholar 

  46. A. Cribier, J. Berland, N. Saoudi, M. Redonnet, N. Moore, and B. Letac, Intracoronary streptokinase, OK!…, Intravenous streptokinase, first? Heparin or intravenous streptokinase in acute infarction: preliminary results of a prospective randomized trial with angiographic evaluation in 44 patients. Haemostasis, 16 (Suppl 3):122–129 (1986).

    PubMed  Google Scholar 

  47. P. Monnier, U. Sigwart, and A. Vincent, et al., Anisoylated plasminogen streptokinase activator complex versus streptokinase in acute myocardial infarction. Preliminary results of a randomised study. Drugs, 33 (Suppl 3):175–178 (1987).

    Article  PubMed  Google Scholar 

  48. J. Chesebro, G. Knatterud, and E. Braunwald, Correspondence section. N. Engl. J. Med., 319:1544 (1988).

    Google Scholar 

  49. R. S. Stack, C. M. O’Connor, and D. B. Mark, et al., Coronary perfusion during acute myocardial infarction with a combined therapy of coronary angioplasty and high-dose intravenous streptokinase. Circulation, 77:151–161 (1988).

    Article  PubMed  CAS  Google Scholar 

  50. J. Lopez-Sendón, R. SeabraiGomes, and F. Martin Santos, et al., Intravenous anisoylated plasminogen streptokinase activator complex (APSAC) versus intravenous streptokinase (SK) in myocardial infarction (AMI). A randomized multicenter trial. Eur. Heart J., 9 (Suppl A):10 (1988).

    Google Scholar 

  51. H. I. Miller, A. Roth, A. Parades, B. Shagarodsky, G. Barabash, and S. Laniado, A comparison of early thrombolytic therapy with streptokinase and tissue plasminogen activator in acute myocardial infarction. Eur. Heart J., 9 (Suppl A):215 (1988).

    Google Scholar 

  52. M. Verstraete, W. Bleifeld, and R. W. Brower, et al., Double-blind randomised trial of intravenous tissue-type plasminogen activator versus placebo in acute myocardial infarction. Lancet, 2:965–969 (1985).

    Article  PubMed  CAS  Google Scholar 

  53. M. Verstraete, A. E. R. Arnold, and R. W. Brower, et al., Acute coronary thrombolysis with recombinant human tissue-type plasminogen activator: initial patency and influence of maintained infusion on reocclusion rate. Am. J. Cardiol., 60:231–237 (1987).

    Article  PubMed  CAS  Google Scholar 

  54. E. J. Topol, D. C. Morris, and R. W. Smalling, et al., A multicenter, randomized, placebo-controlled trial of a new form of intravenous recombinant tissue-type plasminogen activator (Activase) in acute myocardial infarction. J. Am. Coll. Cardiol., 9:1205–1213 (1987).

    Article  PubMed  CAS  Google Scholar 

  55. E. J. Topol, R. M. Califf, and B. S. George, et al., A randomized trial of immediate versus delayed elective angioplasty after intravenous tissue plasminogen activator in acute myocardial infarction. N. Engl. J. Med., 317:581–588 (1987).

    Article  PubMed  CAS  Google Scholar 

  56. E. J. Topol, E. R. Bates, and J. A. Jr. Walton, et al., Community hospital administration of intravenous tissue plasminogen activator in acute myocardial infarction: improved timing. Thrombolytic efficacy and ventricular function. J. Am. Coll. Cardiol., 10:1173–1177 (1987).

    Article  PubMed  CAS  Google Scholar 

  57. E. J. Topol, B. S. George, and D. J. Kereiakes, et al., A multicenter, randomized, controlled trial of intravenous tissue plasminogen activator and early intravenous heparin in acute myocardial infarction. J. Am. Coll. Cardiol., 11:232A (1988).

    Article  Google Scholar 

  58. M. L. Simoons, A. E. R. Arnold, and A. Betriu, et al., Thrombolysis with tissue plasminogen activator in acute myocardial infarction: no additional benefit from immediate percutaneous coronary angioplasty. Lancet, 1: 197–203 (1988).

    Article  PubMed  CAS  Google Scholar 

  59. J. A. Johns, H. K. Gold, and R. C. Leinbach, et al., Prevention of coronary artery reocclusion and reduction in late coronary artery stenosis after thrombolytic therapy in patients with acute myocardial infarction. A randomized study of maintenance infusion of recombinant human tissuetype plasminogen activator. Circulation, 78:546–556 (1988).

    Article  PubMed  CAS  Google Scholar 

  60. The TIMI Research Group, Immediate vs delayed catheterization and angioplasty following thrombolytic therapy for acute myocardial infarction. TIMI IIA results. J. Am. Med. Assoc., 260:2849–2858 (1988).

    Article  Google Scholar 

  61. A. J. McNeill, J. S. Shannon, and S. R. Cunningham, et al., A randomised dose ranging study of recombinant tissue plasminogen activator in acute myocardial infarction. Br. Med. J., 296:1768–1771 (1988).

    Article  CAS  Google Scholar 

  62. K. L. Neuhaus, U. Tebbe, and M. Gottwik, et al., Intravenöse Infusion von recombinant tissue plasminogen activator (rt-PA) and Urokinase beim akuten Myokardinfarkt: Zwischenergebnisse der G.A.U.S.-Studie (German Activator Urokinase Study). Klin. Wschr., 66:102–108 (1988).

    PubMed  Google Scholar 

  63. K. L. Neuhaus, W. Fuerer, U. Tebbe, S. Jeep-Tebbe, and A. Vogt, Efficacy of a 90-minute infusion of 100 mg tissue plasminogen activator (rt-PA) in acute myocardial infarction. Eur. Heart J., 9 (Suppl A):9 (1988).

    Google Scholar 

  64. W. Kasper, T. Meinertz, and H. Wollschläger, et al., Coronary thrombolysis during acute myocardial infarction by intravenous BRL 26921, a new anisoylated plasminogen-streptokinase activator complex. Am. J. Cardiol., 58:418–421 (1986).

    Article  PubMed  CAS  Google Scholar 

  65. J. P. Monassier, M. Brochier, and B. Charbonnier, et al., EMINASE versus streptokinase à la phase aiguë de l’infarctus du myocarde: étude randomisée (étude I.R.S. II). 14e Congrès de Cardiologie de langue française; 25–30 (1987).

    Google Scholar 

  66. L. Relik-Van Wely, J. M. J. van der Pol, and R. F. Visser, et al., A preliminary report, on the angiographic assessed patency and reocclusion in patients treated with APSAC for acute myocardial infarction (AMI). A Dutch Multicentre Study. Eur. Heart J., 9 (Suppl A):8 (1988).

    Google Scholar 

  67. P. Vogt, M. D. Schaller, P. Monnier, and U. Kaufamann, et al., Systemic thrombolysis in acute myocardial infarction: Bolus injection of APSAC versus infusion of streptokinase. Eur. Heart J., 9 (Supppl A):213 (1988).

    Article  Google Scholar 

  68. D. G. Mathey, J. Schofer, F. H. Sheehan, H. Becher, V. Tilsner, and H. T. Dodge, Intravenous urokinase in acute myocardial infarction. Am. J. Cardiol., 55:878–882 (1985).

    Article  PubMed  CAS  Google Scholar 

  69. K. L. Neuhaus, U. Tebbe, and M. Gottwik, et al., Intravenöse Infusion von recombinant tissue plasminogen activator (rt-PA) and Urokinase beim akuten Myokardinfarkt: Zwischenergebnisse der G.A.U.S.-Studie (German Activator Urokinase Study). Klin. Wschr., 66:102–108 (1988).

    PubMed  Google Scholar 

  70. E. J. Topol, R. M. Califf, and B. S. George, et al., Coronary arterial thrombolysis with combined infusion of recombinant tissue-type plasminogen activation and urokinase in acute myocardial infarction. Circulation, 77:1100–1107 (1988).

    Article  PubMed  CAS  Google Scholar 

  71. J. H. Chesebro, G. Knatterud, and R. Robert, et al., Thrombolysis in myocardial infarction (TIMI) trial. Phase I: a comparison between intravenous tissue plasminogen activator and intravenous streptokinase. Circulation, 76:142–154 (1987).

    Article  PubMed  CAS  Google Scholar 

  72. Primi trial study group, Randomised double-blind trial of recombinant pro-urokinase against streptokinase in acute myocardial infarction. Lancent, 1:863–867 (1989).

    Google Scholar 

  73. P. L. Raynaud, and B. Desveaux, Réocclusion après traitement par l’Actilyse. Arch. Mal. Coeur., 81 (Suppl 1):25–32 (1988).

    PubMed  Google Scholar 

  74. R. S. Kent, A. G. Batson, and J. K. LittleJohn, Thrombolytic effect of tissue-type plasminogen activator, in: Controversies in Thrombolysis. Eds: R. Schroder, S. Sherry, K. L. Mettinger. Current Medical Literature Ltd, London (in press).

    Google Scholar 

  75. H. D. White, J. T. Rivers, and A. H. Maslowski, et al., Effect of intravenous streptokinase as compared with that of tissue plasminogen activator on left ventricular function after first myocardial infarction. N. Engl. J. Med., 320:817–821 (1989).

    Article  PubMed  CAS  Google Scholar 

  76. B. Magnani, for the PAIMS Investigators, Plasminogen activator Italian multicenter study (PAIMS). Comparison of intravenous recombinant single-chain human tissue-type plasminogen activator (rt-PA) with intravenous streptokinase in acute myocardial infarction. J. Am. Coll. Cardiol., 13:19–26 (1989).

    Article  Google Scholar 

  77. S. Schulman, D. Lockner, S. Granqvist, G. Bratt, C. Paul, and D. Nyman, A comparative randomized trial of low dose versus high dose streptokinase in deep vein thrombosis of the thigh. Thromb. Haemost., 51:261–265 (1984).

    PubMed  CAS  Google Scholar 

  78. L. W. Gimple, H. K. Gold, and R. C. Leinbach, et al., Bleeding time measurement predicts spontaneous bleeding during thrombolysis with recombinant tissue-type plasminogen activator (rt-PA). J. Am. Coll. Cardiol., 11:231A (1988).

    Google Scholar 

  79. F. D. A. Summary Basis for Approval of Alteplase (86–0236). (1987) p. 15.

    Google Scholar 

  80. M. Friedman, The coronary thrombus: its origin and fate. Human Pathol., 2:81–128 (1971).

    Article  CAS  Google Scholar 

  81. M. J. Davies, and A. C. Thomas, Plaque fissuring - the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br. Heart J., 53:363–373 (1985).

    Article  PubMed  CAS  Google Scholar 

  82. H. R. Lijnen, C. Zamarron, M. Blaber, M. E. Winkler, and D. Collen, Activation of plasminogen by pro-urokinase. I. Mechanism. J. Biol. Chem., 261:1253–1258 (1986).

    PubMed  CAS  Google Scholar 

  83. D. Collen, F. De Cock, E. Demarsin, H. R. Lijnen, and D. C. Stump, Absence of synergism between tissue-type plasminogen activator (t-PA), single chain urokinase-type plasminogen activator (scu-PA) and urokinase on clot lysis in a plasma milieu in vitro. Thromb. Haemost., 56:35–39 (1986).

    PubMed  CAS  Google Scholar 

  84. V. Gurewich, and R. Pannell, Synergism of tissue-type plasminogen activator (t-PA) and single-chain urokinase-type plasminogen activator (scu-PA) on clot lysis in vitro and a mechanism for this effect. Thromb. Haemost., 57:372 (1987).

    PubMed  CAS  Google Scholar 

  85. D. Collen, J. M. Stassen, D. C. Stump, M. Verstraete, Synergism of thrombolytic agents in vivo. Circulation, 74:838–842 (1986).

    Article  PubMed  CAS  Google Scholar 

  86. A. A. Ziskind, H. K. Gold, T. Yasuda, M. Kanke, and J. L. Guererro, et al., Coronary thrombolysis in dogs with synergistic combinations of human tissue-type plasminogen activator (r-PA) and single chain urokinase-type plasminogen activator (scu-PA). Clin. Res., 35:337A (1987).

    Google Scholar 

  87. D. Collen, D. C. Stump, and F. Van de Werf, Coronary thrombolysis in patients with acute myocardial infarction by intravenous infusion of synergic thrombolytic agents. Am. Heart J., 112:1083–1084 (1986).

    Article  PubMed  CAS  Google Scholar 

  88. D. Collen, and F. van de Werf, Coronary arterial thrombolysis with low-dose synergistic combinations of recombinant tissue-type plasminogen activator (rt-PA) and recombinant single-chain urokinase-type plasminogen activator (rscu-PA) for acute myocardial infarction. Am. J. Cardiol., 60:431–444 (1987).

    Article  PubMed  CAS  Google Scholar 

  89. P. Cambier, F. Van de Werf, G. R. Larsen, and D. Collen, Pharmacokinetics and thrombolytic properties of a nonglycosylated mutant of human tissuetype plasminogen activator, lacking the finger and growth domains, in dogs with copper coil-induced coronary artery thrombosis. J. Cardiovasc. Pharmacol., 11:468–472 (1988).

    Article  PubMed  CAS  Google Scholar 

  90. L. Nelles, H. R. Lijnen, D. Collen, and W. E. Homes, Characterization of recombinant human single chain urokinase-type plasminogen activator mutants produced by site-specific mutagenesis of lysine 158. J. Biol. Chem., 262:5682–5689 (1987).

    PubMed  CAS  Google Scholar 

  91. D. Collen, J. Mao, and J. M. Stassen, et al., Thrombolytic properties of Lys-158 mutants of recombinant single chain urokinase-type plasminogen activator in rabbits with jugular vein thrombosis. J. Vasc. Med. Biol., 1:46–49 (1989).

    Google Scholar 

  92. L. Nelles, H. R. Lijnen, D. Collen, and W. E. Holmes, Characterization of a fusion protein consisting of amino acids 1 to 263 of tissue-type plasminogen activator and amino acids 144 to 411 of urokinase-type plasminogen activator. J. Biol. Chem., 262:10855–10862 (1987).

    PubMed  CAS  Google Scholar 

  93. D. Collen, J. M. Stassen, E. Demarsin, L. Kieckens, H. R. Lijnen, and L. Nelles, Pharmacokinetics and thrombolytic properties of chimaeric plasminogen activators consisting of the NH2-terminal region of human tissue-type plasminogen activator and the COOH-terminal region of human single chain urokinase-type plasminogen activator. J. Vasc. Med. Biol., 1:234–240 (1989).

    Google Scholar 

  94. E. Haber, and M. Runge, et al., Antibody targeted fibrinolysis. Thromb. Haemost. 57:253 (1987).

    Google Scholar 

  95. E. Haber, T. Quertermous, G. R. Matsueda, and M. S. Runge, Innovative approaches to plasminogen activator therapy. Science, 243:51–56 (1989).

    Article  PubMed  CAS  Google Scholar 

  96. M. Dewerchin, H. R. Lijnen, B. Van Hoef, F. De Cock, and D. Collen, Biochemical properties of conjugates of urokinase-type plasminogen activator with a monoclonal antibody specific for crosslinked fibrin. Eur. J. Biochem., 185:141–149 (1989).

    Article  PubMed  CAS  Google Scholar 

  97. D. Collen, M. Dewerchin, J. M. Stassen, L. Kieckens, and H. R. Lijnen, Thrombolytic and pharmacokinetic properties of conjugates of urokinase-type plasminogen activator with a monoclonal antibody specific for cross-linked fibrin. Fibrinolysis, 3:197–202 (1989).

    Article  CAS  Google Scholar 

  98. L. A. Harker, Clinical trials evaluating platelet-modifying drugs in patients with atherosclerotic cardiovascular disease and thrombosis. Circulation, 73:206–223 (1986).

    Article  PubMed  CAS  Google Scholar 

  99. V. Fuster, L. Badimon, J. Badimon, P. C. Adams, V. Turitto, and J. H. Chesebro, Drugs interfering with platelet functions: mechanisms and clinical relevance, in: Thrombosis and Haemostasis. Eds: M. Verstraete, J. Vermylen, R. Lijnen, J. Arnout, Leuven University Press, p.349–418 (1987).

    Google Scholar 

  100. J. Loscalzo, and D. E. Vaughan, Tissue plasminogen activator promotes platelet disaggregation in plasma. J. Clin. Invest., 79:1749–1755 (1987).

    Article  PubMed  CAS  Google Scholar 

  101. T. Yasuda, H. K. Gold, and R. C. Leinbach, et al., Tissue plasminogen activator (t-PA) resistant platelet rich white thrombus (WT) and combination treatment of t-PA and antiplatelet antibody to GPIIb/IIIa receptor (7E3). Circulation, 78:II-15 (1988).

    Google Scholar 

  102. H. K. Gold, B. S. Coller, and T. Yasuda, et al., Rapid and sustained coronary artery recanalization with combined bolus injection of recombinant tissue-type plasminogen activator and monoclonal antiplatelet GPIIb/IIIa antibody in a canine preparation. Circulation, 77:670–677 (1988).

    Article  PubMed  CAS  Google Scholar 

  103. I. K. Jang, A. A. Ziskind, H. K. Gold, R. C. Leinbach, J. T. Fallon, and D. Cohen, Prevention of arterial platelet occlusion by selective thrombin inhibition. Circulation, 78:11–311 (1988).

    Google Scholar 

  104. S. R. Hanson, and L. A. Harker, Interruption of acute platelet-dependent thrombosis by the synthetic antithrombin D-phenylalanyl-L-prolyl-L-arginyl chloromethyl ketone. Proc. Natl. Acad. Sci. USA, 85:3184–3188 (1988).

    Article  PubMed  CAS  Google Scholar 

  105. K. A. Hajjar, N. M. Hamel, P. C. Harpel, and R. L. Nachman, Binding of tissue plasminogen activator to cultured human endothelial cells. J. Clin. Invest., 80:1712–1719 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Collen, D., Gold, H.K. (1990). New Developments in Thrombolytic Therapy. In: Liu, C.Y., Chien, S. (eds) Fibrinogen, Thrombosis, Coagulation, and Fibrinolysis. Advances in Experimental Medicine and Biology, vol 281. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3806-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3806-6_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6697-3

  • Online ISBN: 978-1-4615-3806-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics