Skip to main content

Interactions between Fibrin, Collagen and Endothelial Cells in Angiogensis

  • Chapter
Fibrinogen, Thrombosis, Coagulation, and Fibrinolysis

Abstract

The role of fibrin in the generation of new blood vessels was examined in this study. Using a wound chamber model, we investigated the sequential interactions between endothelial cells and the extracellular matrix during angiogenesis. Silicone tubes 5 mm long and 1.4 mm in internal diameter were sutured to the cut ends of thigh muscles in the rats. The contents of the chamber were removed at intervals for histological, immunohistochemical and electron microscopic studies. We observed an initial phase of fluid accumulation in the wound chamber followed by formation of a fibrin/fibronectin clot. Migration of endothelial cells, macrophages and fibroblasts into the clot occurred after the 1st week. The subsequent phase of fibrinolysis was accompanied by deposition of collagen and organization of endothelial cells into capillary tubes. These findings support the view that angiogenesis is the product of interactions between endothelial cells and a changing extra-cellular matrix (ECM) and requires the participation of soluble and immobilized plasma proteins and local ECM factors. Our findings indicate that fibrin is intimately involved in both hemostasis and angiogenesis; these are sequential steps in the initial phase of wound healing. Thus, fibrin/fibrinogen occupies a central position and provides a vital link in the initiation of the cascade event of wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auerbach, R., 1981, in:“Lymphokines”. (E. Pick, Ed), Academic Press, pp:69–79.

    Google Scholar 

  • Ausprunk, D. H., and Folkman, J., 1977, Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis, Microvas Res., 14:53–65.

    Article  CAS  Google Scholar 

  • Bernfiled, M. R., Banerjee, S. D., and Cohn, R. H., 1972, Dependence of salivary gland morphology and branching morphogenesis upon acid mucopolysaccharide-protein (proteoglycan) at the epithelial surface, J. Cell. Biol.,52:674–689.

    Article  Google Scholar 

  • Bowersox, J. C., and Sorgente, N., 1982, Chemotaxis of aortic endothelial cells in response to fibronectin, Cancer Res., 42:2547–2551.

    PubMed  CAS  Google Scholar 

  • Burgess, W. H., Mehlman, T., Friesel, R., Johnson W. V., and Maciag, T., 1985, Multiple forms of endothelial cell growth factor. Rapid isolation and biological and chemical characterization, J. Biol. Chem.,260:11389–11392.

    PubMed  CAS  Google Scholar 

  • Cheresh, D. A., Berliner, S. A., Vicente, V., and Ruggeri, Z. M., 1989, Recognition of distinctive adhesive sites on fibrinogen by related integrins on platelets and endothelial cells, Cell, 58:945–953.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. A. F., DellaPelle, P., Manseau, E., Lanigan, J. M., Dvorak, H. F., and Colvin, R. B., 1982, Blood vessel fibronectin increases in conjunction with endothelial cell proliferation and capillary ingrowth during wound healing, J. Invest. Dermat., 79:269–276.

    Article  CAS  Google Scholar 

  • Delvos, U., Gajdusek, H. Sage, L. A., Harker, A., and Schwartz, M., 1982, Interactions of vascular wall cells with collagen gels, Lab. Invest., 46:61–72.

    PubMed  CAS  Google Scholar 

  • Folkman, J., Merter, E., Abernathy, C., and Williams, G., 1971, Isolation of a tumor factor responsible for angiogenesis, J. Exp. Med., 133:275–288.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J., Haudneschild, C., and Zetter B. R., 1979, Longterm culture of capillary endothelial cells, Proc. Natl. Acad. Sci. USA,76:5217–5221.

    Article  PubMed  CAS  Google Scholar 

  • Forbus, W. D., 1943, “Reaction to Injury, Pathology for Students of Disease.” Williams and Wilkins, Baltimore, Maryland.

    Google Scholar 

  • Gimbrone, M. A. Jr., Cotran, R. S., and Folkman, J, 1976, Human vascular endothelial cells in culture: growth and DNA synthesis, J. Cell Biol.,60:673–684.

    Article  Google Scholar 

  • Gimbrone, M. A., Cotran, R. S., Leapman, S. B., and Folkman, J, 1973, Tumor growth and vascularization; An experimental model using the rabbit cornea, J. Natl. Cancer Inst., 52:413–427.

    Google Scholar 

  • Gospadarowicz, D., Lui, G.-M., 1981, Effect of substrate and fibroblast growth factor on the proliferation in vitro of bovine aortic endothelial cells, J. Cell Physiol., 109:69–81.

    Article  Google Scholar 

  • Grant, D. S., Tashiro, K. I., Segui-Real, B., Yamada, K., and Martin, G. R., 1989, Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro, Cell, 58:933–943.

    Article  PubMed  CAS  Google Scholar 

  • Guillino, P. M., 1981, in: “Tissue Growth Factors”. (R. Baserga, Ed), Berlin, Springer-Verlag. pp:427–449.

    Book  Google Scholar 

  • Hall, H. G., Farson, D. A., and Bissell, M. J., 1982, Lumen formation by epithelial cell lines in response to collagen overlay: A morphogenetic model in culture, Proc. Natl. Acad. Sci, USA, 79:4672–4676.

    Article  PubMed  CAS  Google Scholar 

  • Hollund, B., Clemmensen, I., Junker, P., and Lyon, H., 1982, Fibronectin in experimental granulation tissue, Acta Path. Microbio!. Immunol. Scan. Sect. A., 90:159–165.

    Google Scholar 

  • Ingber, D. E., and Folkman, J., 1989, How does extracellular matrix control morphogenesis? Cell, 58:803–805.

    Article  PubMed  CAS  Google Scholar 

  • Johnsson, A., Heldon, C.-H., Westermark, B., and Wasteson, A., 1982, Platelet-derived growth factor; identification of constituent polypeptide chains, Biochem. Biophys. Res. Commun., 104:66–74.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, V., 1984, in: “Pathological Basis of Disease.” (S. L. Robbins and R. S. Cotran, Eds), 2nd ed., pp:91–102.

    Google Scholar 

  • Kurkinen, M., Vaheri, A., Roberts, P. J., and Stenman, S, 1980, Sequential appearance of fibronectin and collagen in experimental granulation tissue, Lab. Invest., 43:47–51.

    PubMed  CAS  Google Scholar 

  • Liu, H. M., Schmid, K., 1988a, The nerve growth promoting activity of human plasma αl-acid glycoprotein, J. Neurosci. Res., 20:60–72.

    Article  Google Scholar 

  • Liu, H. M., 1988b, Neovasculature and blood-brain barrier in ischemic brain infarct, Acta Neuropathol., 75:422–426.

    Article  CAS  Google Scholar 

  • Liu, H. M., and Sturner, W. Q., 1988c, The extravasation of plasma proteins in traumatic brain lesions, Forensic Sci. International,38:285–295.

    Article  CAS  Google Scholar 

  • Liu, H. M., Wang, D. L., and Liu, C. Y., 1989, Angiogenesis in a wound chamber model, Submitted for publication

    Google Scholar 

  • Maciag,T., 1984,Angiogenesis, in: “Progress in Hemostasis and Thrombosis.” Vol 7, Grune and Stratton, pp:167–182.

    Google Scholar 

  • Madri, J. A., Williams, S. K., Wyatt, T., and Mezzio, C., 1983, Capillary endothelial cell cultures: phenotypic modulation by matrix components, J. Cell Biol., 97:153–165.

    Article  PubMed  CAS  Google Scholar 

  • Martinet, Y., Bitterman, P. B., Mornex, J., Grotendorst, G. R., Martin, G. R., and Crystal, R. G., 1986, Activated human monocyte express the c-sis proto-oncogene and release a mediator showing PDGF-like activity, Nature, 319:158–160.

    Article  PubMed  CAS  Google Scholar 

  • Montesano, R., Mouron, P., and Orci, L., 1985, Vascular outgrowth from tissue explants embedded in fibrin or collagen gels: A simple in vitro model of angiogenesis, Cell Biology International Reports,9:869–875.

    Article  PubMed  CAS  Google Scholar 

  • Mosher, D. F., 1971, Cross-linking of cold-insoluble globulin by fibrin-stabilizing factor, J. Biol. Chem., 250:6614–6616.

    Google Scholar 

  • Patten, B. M., 1971, The early embryology of the chick. New York, McGraw-Hill.

    Google Scholar 

  • Roberts, A. B., Sporn, M. B., Assoian, R. K., Smith, J. M., Roche, N. S., Wakefield, L. M., Heine, U. I., Liotta, L. A., Falanga, V., Kehrl J. H., and Fauci, A. S., 1986, Transforming growing factor type B:Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro, Proc. Natl. Acad. Sci. USA,83:4167–4171.

    Article  PubMed  CAS  Google Scholar 

  • Ross, R., Glomset, J., and Harker, L., 1977, Response to injury and atherogenesis, Am. J. Path, 86:665–674.

    Google Scholar 

  • Ruoslahti, E., and Pierschbacher, M. D., 1987, New perspective in cell adhesion: RGD and integgrins, Science,238:491–497.

    Article  PubMed  CAS  Google Scholar 

  • Shoshan, S., 1981, Wound Healing, in: “International Review of Connective Tissue Research, vol. 9., D. A. Hall and D. S. Jackson (eds)., Academic Press, pp:1–26.

    Google Scholar 

  • Taussig, M. J., 1984, Processes in Pathology and Microbiology, Blackwell-Scientific Publishers, Oxford, London. pp:640–646.

    Google Scholar 

  • Thakral, K. K., Goodson, W. H., and Hunt, T. K., 1979, Stimulation of wound blood vessel growth by wound macrophages, J. Cell Physiol, 96:203–213.

    Google Scholar 

  • Thompson, W. D., Campbell, R., and Evans, A. T., 1985, Fibrin degradation and angiogenesis: quantitative analysis of the angiogenic response in the chick chorioallantoic membrane, J. Pathol.,145:27–37.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, K. A., Candelore, M. R., Rios-Candelore, M., and Fitzpatrick, S., 1984, Purification and characterization of acidic fibroblast growth factor from bovine brain, Proc. Natl. Acad. Sci., 81:357–365.

    Article  PubMed  CAS  Google Scholar 

  • Vaheri, A., Salonen, E.-M., Varito, T., Hedman, K., and Stenman, S., 1983: Fibronectin and tissue injury. In: “Biology and Pathology of the Vessel Wall.” Neville Woolf, Praeger, East Sussex, U.K. pp:161–171.

    Google Scholar 

  • Zetter, B. R., 1980, Migration of capillary endothelial cells is stimulated by tumor-derived factors, Nature, 285:41–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liu, H.M., Wang, D.L., Liu, C.Y. (1990). Interactions between Fibrin, Collagen and Endothelial Cells in Angiogensis. In: Liu, C.Y., Chien, S. (eds) Fibrinogen, Thrombosis, Coagulation, and Fibrinolysis. Advances in Experimental Medicine and Biology, vol 281. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3806-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3806-6_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6697-3

  • Online ISBN: 978-1-4615-3806-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics