An Independent Haemostatic Mechanism: Shear Induced Platelet Aggregation

  • J. R. O’Brien
  • G. P. Salmon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 281)


We have published (1) evidence indicating that high shearing forces alone applied to platelets expose and activate a unique domain on glycoprotein IIb/IIIa (GPIIb/IIIa) at the platelet surface. In the presence of von Willebrand’s factor (vWf) and divalent cations the platelets will aggregate. This paper reviews the extensive literature on high shear effects. It describes a device in which high shear produced by forcing heparinised whole blood through a complex filter normally results in platelet activation; the platelets aggregate and then block the filter. This system is inhibited by antibodies to GPIIb/IIIa and to vWf: fibrinogen is apparently not involved. The same antibodies to GPIIb/IIIa and vWf prevent high shear induced thrombosis occurring in vivo in animal models. The filter blockage is not influenced by aspirin, heparin and ticlopidine and so involves a different mechanism from the aspirin sensitive mechanisms involved in clinical thrombosis prevention in vivo in man. While there are a number of unexplained phenomena in this global test nevertheless this filter model is a simple way of studying a recently recognised pathway which is almost certainly involved in thrombogenesis in man.


High Shear Platelet Rich Plasma High Shearing Force Platelet Deposition Filter Blockage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. O’Brien, and G. P. Salmon, Shear stress activation of platelet glycoprotein IIb/IIIa plus von Willebrand factor causes aggregation: filter blockage and the long bleeding time in von Willebrand’s disease, Blood,70(No5):1354–61 (1987).PubMedGoogle Scholar
  2. 2.
    J. R. O’Brien, and J. B. Heywood, Some interactions between human platelets and glass: von Willebrand’s disease compared with normal, J. Clin. Path., 20:56–64 (1967).PubMedCrossRefGoogle Scholar
  3. 3.
    L. Badimon, J. J. Badimon, J. Rand, V. T. Turitto, and V Fuster, Platelet deposition on von Willebrand factor-deficient vessels. Extracorporeal perfusion studies in swine with von Willebrand’s disease using native and heparinized blood, J. Lab. Clin. Med., 110(No5):634–47 (1987).PubMedGoogle Scholar
  4. 4.
    J. R. O’Brien, M. D. Etherington, and P. Weir, Platelet aggregation inhibitors: a 51.1 nuclepore filter “bleeding time”, in: Sixth International Congress on Thrombosis of the Mediterranean League against Thromboembolic Diseases, Monte Carlo, 307 T (1980).Google Scholar
  5. 5.
    J. L. Moake, N. A. Turner, N. A. Stathopoulos, L. Nolasco, and J. D. Hellums, Shear-induced platelet aggregation can be mediated by vWf released from platelets, as well as by exogenous large or unusually large vWF multimers, requires adenosine diphosphate, and is resistant to aspirin, Blood, 71(No 5):1366–74 (1988).PubMedGoogle Scholar
  6. 6.
    D. M. Peterson, N. A. Stathopoulos, T. D. Giorgio, J. D. Hellums and J. L. Moake, Shear-induced platelet aggregation requires von Willebrand factor, and platelet membrane glycoproteins Ib and IIb-IIIa, Blood, 69(No 2):625–628 (1987).PubMedGoogle Scholar
  7. 7.
    Y. Ikeda, M. Murata, and Y Araki, et al, Importance of fibrinogen and platelet membrane glycoprotein IIb/IIIa in shear-induced platelet aggregation, Thromb. Res., 51:157–163 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    L. J. Wurzinger, R. Opitz, P. Blasberg, and H. Schmid-Schonbein, Platelet and coagulaon parameters following millisecond exposure to laminar shear stress, Thromb. Haemost., 54(2):381–386 (1985).PubMedGoogle Scholar
  9. 9.
    H. R. Baumgartner, The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi, Microvasc. Res., 5:167–79 (1973).PubMedCrossRefGoogle Scholar
  10. 10.
    H. R. Baumgartner, T. B. Tschopp, and D. Meyer, Shear rate dependent inhibition of platelet adhesion and aggregation on collagenous surfaces by antibodies to human factor VIII/von Willebrand factor, Br. J. Haematol.,44:127–39 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    K. S. Sakariassen, P. F. E. M. Nievelstein, B. S. Coller, and J. J. Sixma, The role of platelet membrane glycoproteins Ib and IIb-IIIa in platelet adherence to human artery subendothelium, Br. J. Haematol., 63:681–91 (1986).PubMedCrossRefGoogle Scholar
  12. 12.
    L. Badimon, J. J. Badimon, V. T. Turitto, and V. Fuster, Role of von Willebrand factor in mediating platelet-vessel wall interaction at low shear rate; the importance of perfusion conditions, Blood, 73(No 4):961–67 (1989).PubMedGoogle Scholar
  13. 13.
    J. R. O’Brien, and G. P. Salmon, Unpublished results (1989).Google Scholar
  14. 14.
    S. Uchiyama, M. L. Bach, P. Didisheim and E. J. W. Bowie, Clinical evaluation of a new test of haemostasis: the filter bleeding time. Thromb. Res., 34:397–405 (1984).PubMedCrossRefGoogle Scholar
  15. 15.
    S. Berliner, K. Niinga, J. R. Roberts, B. A. Houghton, and Z. M. Ruggeri, Generation and characterization of peptide-specific antibodies that inhibit vW factor binding to glycoprotein IIb/IIIa without interacting with other adhesive molecules, J. Biol. Chem., 263:7500–05 (1988).PubMedGoogle Scholar
  16. 16.
    T. V. Lombardo, E. Hodson, J. R. Roberts, T. J. Kunicki, T. S. Zimmerman, and Z. M. Ruggeri, Independent modulation of von Willebrand factor and fibrinogen binding to the platelet membrane glycoprotein IIb/IIIa complex as demonstrated by monoclonal antibody, J. Clin. Invest., 76:1950–58 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    E. F. Plow, M. D. Pierschbacher, E. Ruoslahti, G. A. Marguerie, and M. H. Ginsberg, The effect of arg-gly-asp-containing peptides on fibrinogen and von Willebrand factor binding to platelets, Proc. Natl. Acad. Sci. USA,82:8057–61 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    Y. Cadroy, R. A. Houghten, and S. R. Hanson, RGDT peptide selectively inhibits platelet-dependent thrombus formation in vivo. Studies using a baboon model, J. Clin. Invest., 84:939–44 (1989).PubMedCrossRefGoogle Scholar
  19. 19.
    H. J. Weiss, J. Hawiger, Z. M. Ruggeri, V. T. Turitto, and P. Thiagarajan, T. Hoffmann. Fibrinogen-independent platelet adhesion and thrombus formation on subendothelium mediated by glycoprotein IIb-IIIa complex at high shear rate, J. Clin. Invest., 83:288–97 (1989).PubMedCrossRefGoogle Scholar
  20. 20.
    D. F. Mosher, Influence of proteins on platelet-surface interactions, in: Interactions of the blood with natural and artificial surfaces, E. Salzman, ed., Marcel Dekker, N.Y. 55–101 (1972).Google Scholar
  21. 21.
    T. C. Nichols, D. A. Bellinger, T. A. Johnson, M. A. Lamb, T. R. Griggs, von Willebrand’s disease prevents occlusive thrombosis in stenosed and injured porcine coronary arteries, Circulation Res., 59(No 1):15–26 (1986).PubMedCrossRefGoogle Scholar
  22. 22.
    J. R. O’Brien, G. P. Salmon, and R. V. Majer, Abnormalities in the in vitro “filter bleeding time” in pregnancy and in pre-eclamptic toxaemia (PET). Thromb. and Haemostas., 62:424 (1989).Google Scholar
  23. 23.
    S. M. Magid, M. Perlin, and E. L. Gottfried. Increased erythrocyte osmotic fragility in pregnancy, Am. J. Obstet. Gynecol., 144:910–914 (1982).PubMedGoogle Scholar
  24. 24.
    P. M. Mannucci, Desmopressin: a nontransfusional form of treatment for congenital and acquired bleeding disorders, Blood, 72(no. 5):1449–55 (1988).PubMedGoogle Scholar
  25. 25.
    J. R. O’Brien, and G. P. Salmon, Heat treatment in von Willebrand’s disease, Br. Med. J., 291:409 (1985).CrossRefGoogle Scholar
  26. 26.
    J. R. O’Brien, P. J. Green, G. P. Salmon, Desmopressin and sheared platelets: a test, Lancet, i:655 (1988).CrossRefGoogle Scholar
  27. 27.
    S. R. Hanson, F. I. Pareti, and Z. M. Ruggeri, et al. Effects of monoclonal antibodies against the platelet glycoprotein IIb/IIIa complex on thrombosis and hemostasis in the baboon, J. Clin. Invest., 81:149–58 (1988).PubMedCrossRefGoogle Scholar
  28. 28.
    B. S. Coller, J. D. Folts, L. E. Scudder, and S. R. Smith, Antithrombotic effect of a monoclonal antibody to the platelet glycoprotein IIb/IIIa receptor in an experimental animal model, Blood, 68(No 3):783–86 (1986).PubMedGoogle Scholar
  29. 29.
    D. A. Bellinger, T. C. Nichols, and M. S. Read, et al, Prevention of occlusive coronary artery thrombus by a mural monochromal antibody to porcine von Willebrand factor, Proc. Natl. Acad. Sci, USA, 84:8100–04 (1987).CrossRefGoogle Scholar
  30. 30.
    V. Fuster, B. Stein, L. Badimon, and J. H. Chesebro, Antithrombotic therapy after myocardial reperfusion in acute myocardial infarction, J. Am. Coll. Cardiol., 12 (No 6):78A–84A (1988).PubMedCrossRefGoogle Scholar
  31. 31.
    M. J. Davies, A. C. Thomas, P. A. Knapman, and J. R. Hangartner, Intramyocardial platelet aggregation in patients with unstable angina suffering sudden ischemic cardiac death, Circulation, 73(No 3):418–27 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    S. Raha, C. Opper, and W. Wesemann, Correlation of membrane anisotropy with function in subpopulations of human blood platelets, Br. J. Haemat., 72:397–401 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • J. R. O’Brien
    • 1
  • G. P. Salmon
    • 1
  1. 1.Central LaboratorySt. Mary ’s HospitalPortsmouth, HantsUK

Personalised recommendations