Role of Insulin Receptors in the Expression of Prostaglandin E1 Binding Activity in Platelets

  • Nighat N. Kahn
  • A. Kumar Sinha
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 281)


Aggregation of platelets induced by agonists like thrombin, ADP, 1-epinephrine or collagen is believed to be critically important not only in the normal blood coagulation process (1), but platelet hyperactivity has been shown to be crucially important in the pathogenesis of acute ischemic heart disease (2). Studies have demonstrated increased platelet released products (3), aggregates of platelets in the circulation (4), and enhanced aggregation of platelets (2) in patients with acute myocardial infarction or unstable angina. The aggregation of platelets is counterbalanced by several humoral factors which include prostanoids like prostacyclin (PGI2) and prostaglandin E1 (PGE1). These prostaglandins inhibit platelet aggregation by increasing intracellular cyclic AMP level through the activation of adenylate cyclase in these cells (5), and are believed to play a significant role in the prevention of thrombosis and atherosclerosis.


Adenylate Cyclase Scatchard Plot Normal Platelet Platelet Suspension Intact Platelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. V. R. Born and R. M. Hardisty, in: “Human Blood Coagulation, Haemostasis and Thrombosis.” R. Biggs, ed. Blackwell Scientific Publication, London. pp. 159–187 (1972).Google Scholar
  2. 2.
    M. A. DeWood, J. Spores, R. Notske, L. T. Mouser, R. Burroughs, M. S. Golden, and H. T. Lang, New Eng. J. Med., 303:897–902 (1980).PubMedCrossRefGoogle Scholar
  3. 3.
    A. C. DeBoer, A. G. C. Turpie, R. W. Butt, R. V. Johnston, and E. Genton, Circulation, 66:327–33 (1982).CrossRefGoogle Scholar
  4. 4.
    M. Sobel, E. W. Salzman, G. C. Davies, R. I. Handin, J. Sweeney, J. Ploetz, and G. Kurland, Thromb. Haemost., 40:66–72 (1978).Google Scholar
  5. 5.
    G. A. Robison, A. Arnold, and R. C. Hartman, Pharmacol. Res. Commun., 1:325–32 (1969).CrossRefGoogle Scholar
  6. 6.
    P. J. Palumbo, L. J. Melton, and R. G. Tancredi, in: “Clinical Diabetes Mellitus,” J. K. Davidson, ed. Thieme Inc. New York pp. 349–60 (1986).Google Scholar
  7. 7.
    N. N. Kahn, and A. K. Sinha, J. Biol. Chem., 265:4976–81 (1990).PubMedGoogle Scholar
  8. 8.
    G. Scatchard, Ann. N. Y. Acad. Sci., 51:660–72 (1949).CrossRefGoogle Scholar
  9. 9.
    N. N. Kahn and A. K. Sinha, Biochim. Biophys. Acta., 972:45–53 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    M. P. Czeck, Annu. Rev. Biochem., 46:359–84 (1977).CrossRefGoogle Scholar
  11. 11.
    N. N. Kahn and A. K. Sinha, (unpublished).Google Scholar
  12. 12.
    T. K. Ray, A. K. Dutta-Roy, and A. K. Sinha, Biochim. Biophys. Acta, 856:421–27 (1986).PubMedCrossRefGoogle Scholar
  13. 13.
    M. Udvardy, G. Pfliegler, and K. Rak, Experientia, 41:422–33 (1985).PubMedCrossRefGoogle Scholar
  14. 14.
    N. N. Kahn, H. S. Mueller, and A. K. Sinha, Circulation Res. (in press) (1990).Google Scholar
  15. 15.
    N. N. Kahn, W. A. Bauman, H. S. Mueller, and A. K. Sinha, Clinical Res., 37:269A (1989).Google Scholar
  16. 16.
    N. N. Kahn, and A. K. Sinha, Biochim. Biophys. Acta, 984:113–118 (1989).PubMedCrossRefGoogle Scholar
  17. 17.
    A. K. Dutta-Roy and A. K. Sinha, J. Biol. Chem., 262:12685–91 (1987).PubMedGoogle Scholar
  18. 18.
    A. G. Gilman, Proc. Natl. Acad. Sci. USA, 67:305–12 (1970).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Nighat N. Kahn
    • 1
  • A. Kumar Sinha
    • 1
  1. 1.Division of Cardiology Department of Medicine, Montefiore Medical CenterAlbert Einstein College of MedicineBronxUSA

Personalised recommendations