Skip to main content

Transformation of Prostacyclin (PGI2) to a Biologically Active Metabolite: 5(6)-Oxido-PGI1 by Cytochrome P450-Dependent Epdxygenase

  • Chapter
Fibrinogen, Thrombosis, Coagulation, and Fibrinolysis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 281))

Summary

The renal epoxygenase has been demonstrated to be an active pathway for the conversion of PGI2 to a new, previously unreported, metabolite. This metabolite was isolated and identified by radiogas-chromatography-mass spectrometry as 5-hydroxy-6-keto PGF. Its structure was further confirmed by comparison of the mass-spectra to that of the synthetic standard. The formation of 5-hydroxy-6-keto PGF in the kidney suggested epoxidation of prostacyclin via the renal epoxygenase as an alternative pathway of PGI2 metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Y. H. Lu and S. B. West. Multiplicity of mammalian microsomal cytochromes P-450. Pharmacol. Rev., 31:277–295 (1980).

    Google Scholar 

  2. F. J. Gonzalez. The molecular biology of cytochrome P-450. Pharmacol. Rev., 40:243–257 (1988).

    Google Scholar 

  3. J. Capdevila, L. Parkhill, N. Chacos, R. Okita, B. S. S. Masters and R. W. Estabrook. The oxidative metabolism of arachidonic acid by purified cytochrome P-450. Biochem. Biophys. Res. Commun., 101:1357–1363 (1981).

    Article  PubMed  CAS  Google Scholar 

  4. J. Capdevila, N. Chacos, J. Werringloer, R. A. Prough and R. W. Estabrook. Liver microsomal cytochrome P450 and oxidative metabolism of arachidonic acid. Proc. Natl. Acad. Sci. USA, 78:5362–5366 (1981).

    Article  PubMed  CAS  Google Scholar 

  5. H. A. Singer, J. A. Saye and M. J. Peach. Effect of cytochrome P450 inhibitors on endothelium-dependent relaxation in rabbit aorta. Blood Vessels, 21:223–230 (1984).

    PubMed  CAS  Google Scholar 

  6. H. R. Jacobson, S. Corona, J. Capdevila, N. Chacos, S. Manna, A. Womack and J. R. Falck. 5,6 epoxyeicosatrienoic acid inhibits sodium absorption and potassium secretion in rabbit cortical collecting tubule. Kidney Int., 25:330 (1984) (abstract).

    Google Scholar 

  7. P. Sacerdoti, N. G. Abraham, J. C. McGiff, and M. L. Schwartzman. Renal cytochrome P-450 dependent metabolism of arachidonic acid in spontaneously hypertensive rats. Biochem. Pharmacol., 37:521–527 (1988).

    Article  PubMed  CAS  Google Scholar 

  8. C. R. Pace-Asciak. Decreased renal prostaglandin catabolism precedes onset of hypertension in developing spontaneously hypertensive rats. Nature, 263:510–511 (1976).

    Article  PubMed  CAS  Google Scholar 

  9. C. R. Pace-Asciak, M. C. Carrara, G. Rangaraj, and K. C. Nicolaou. Enhanced formation of PGI2: a potent hypotensive substance, by aortic rings and homogenates of the spontaneously hypertensive rat. Prostaglandins,15:1005–1012 (1978).

    PubMed  CAS  Google Scholar 

  10. C. R. Pace-Asciak, M. C. Carrara, and K. C. Nicolaou. Prostaglandin 12 has more potent hypotensive properties than prostaglandin E2 in the spontaneously hypertensive rat. Prostaglandins, 15:999–1003 (1978).

    PubMed  CAS  Google Scholar 

  11. P. Y.-K. Wong, J. C. McGiff, F. F. Sun, and K. U. Malik. Pulmonary metabolism of prostacyclin (PGI2) in the rabbit. Biochem. Biophys. Res. Commun., 83:731–738 (1978).

    Article  PubMed  CAS  Google Scholar 

  12. H. J. Hawkins, B. J. Smith, K. C. Nicolaou, and T. E. Eling. Studies of the mechanisms involved in the fate of prostacyclin (PGI2) and 6-keto-PGF in the pulmonary circulation. Prostaglandins, 16:871–884 (1978).

    CAS  Google Scholar 

  13. X. R. He, and P. Y.-K. Wong. Transformation of prostacyclin (PGI2) to a biologically active metabolite: 5(6)-oxido-PGI2 by cyto-P450 dependent epoxygenase. FASEB J. 3:No. 3, 2714 (1989).

    Google Scholar 

  14. R. A. Johnson, F. H. Lincoln, E. G. Nidy, H. P. Schneider, J. L. Thompson and U. Axen. Synthesis and characterization of prostacyclin, 6-keto-prostaglandin F, prostaglandin I2, and prostaglandin 13. J. Amer. Chem. Soc., 100:7690–7693 (1980).

    Article  Google Scholar 

  15. P. Y.-K. Wong, J. C. McGiff, L. Cagen, K. U. Malik and F. F. Sun. Metabolism of prostacyclin in the rabbit kidney. J. Biol. Chem., 254:12–14 (1979).

    PubMed  CAS  Google Scholar 

  16. E. H. Oliw, J. A. Lawson, H. R. Brash, J. A. Oates. Arachidonic acid metabolism in rabbit renal cortex: formation of two novel dihydroxyeicosatrienoic acids. J. Biol. Chem., 256:9924–9931 (1981).

    PubMed  CAS  Google Scholar 

  17. P. Y.-K. Wong, K. U. Malik, D. M. Desiderio, J. C. McGiff and F. F. Sun. Hepatic metabolism of prostacyclin (PGI2) in the rabbit: formation of a potent novel inhibitor of platelet aggregation. Biochem. Biophys. Res. Commun.,93:486–494 (1980).

    Article  PubMed  CAS  Google Scholar 

  18. M. J. S. Miller, E. G. Spokas and J. C. McGiff. Metabolism of prostaglandin E2 in the isolated perfused kidney of the rabbit. Biochem. Pharmacol. 31:2955–2960 (1982).

    Article  PubMed  CAS  Google Scholar 

  19. S. Manna, J. R. Falck, N. Chacos and J. Capdevile. Synthesis of arachidonic acid metabolites produced by purified kidney cortex microsomal cytochrome P450. Tetrahedron Letters, 24:33–36 (1983).

    Article  CAS  Google Scholar 

  20. N. R. Ferreri, M. Schwartzman, N. G. Ibraham, P. N. Chander and J. C. McGiff. Arachidonic acid metabolism in a cell suspension isolated from rabbit renal outer medulla. J. Pharmacol. Exp. Ther., 231:441–448 (1984).

    PubMed  CAS  Google Scholar 

  21. M. Schwartzman, N. R. Ferreri, M. Carroll, N. Ibraham, R. D. Levere and J. C. McGiff. Arachidonic acid metabolism in isolated cells from the thick ascending limb of Henle’s loop. Clin. Res., 32:456A (1984) (abstract).

    Google Scholar 

  22. J. Capdevila, N. Chacos, J. R. Falck, S. Manna, A. Negro-Vilar and S. R. Ojeda. Novel hypothalamic arachidonate products stimulate somatostatin release from the median eminence. Endocrinology, 113:421–423 (1983).

    Article  PubMed  CAS  Google Scholar 

  23. E. H. Oliw. Metabolism of 5(6) oxidoeicosatrienoic acid by ram seminal vesicles: formation of two stereoisomers of 5-hydroxyprostaglandin I. J. Biol. Chem., 259:2716–2721 (1984).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wong, P.YK. (1990). Transformation of Prostacyclin (PGI2) to a Biologically Active Metabolite: 5(6)-Oxido-PGI1 by Cytochrome P450-Dependent Epdxygenase. In: Liu, C.Y., Chien, S. (eds) Fibrinogen, Thrombosis, Coagulation, and Fibrinolysis. Advances in Experimental Medicine and Biology, vol 281. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3806-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3806-6_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6697-3

  • Online ISBN: 978-1-4615-3806-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics