Transformation of Prostacyclin (PGI2) to a Biologically Active Metabolite: 5(6)-Oxido-PGI1 by Cytochrome P450-Dependent Epdxygenase

  • Patrick Y.-K. Wong
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 281)


The renal epoxygenase has been demonstrated to be an active pathway for the conversion of PGI2 to a new, previously unreported, metabolite. This metabolite was isolated and identified by radiogas-chromatography-mass spectrometry as 5-hydroxy-6-keto PGF. Its structure was further confirmed by comparison of the mass-spectra to that of the synthetic standard. The formation of 5-hydroxy-6-keto PGF in the kidney suggested epoxidation of prostacyclin via the renal epoxygenase as an alternative pathway of PGI2 metabolism.


Arachidonic Acid Metabolism Trimethylsilyl Ether Rabbit Kidney Microsomal Cytochrome Epoxyeicosatrienoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Y. H. Lu and S. B. West. Multiplicity of mammalian microsomal cytochromes P-450. Pharmacol. Rev., 31:277–295 (1980).Google Scholar
  2. 2.
    F. J. Gonzalez. The molecular biology of cytochrome P-450. Pharmacol. Rev., 40:243–257 (1988).Google Scholar
  3. 3.
    J. Capdevila, L. Parkhill, N. Chacos, R. Okita, B. S. S. Masters and R. W. Estabrook. The oxidative metabolism of arachidonic acid by purified cytochrome P-450. Biochem. Biophys. Res. Commun., 101:1357–1363 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    J. Capdevila, N. Chacos, J. Werringloer, R. A. Prough and R. W. Estabrook. Liver microsomal cytochrome P450 and oxidative metabolism of arachidonic acid. Proc. Natl. Acad. Sci. USA, 78:5362–5366 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    H. A. Singer, J. A. Saye and M. J. Peach. Effect of cytochrome P450 inhibitors on endothelium-dependent relaxation in rabbit aorta. Blood Vessels, 21:223–230 (1984).PubMedGoogle Scholar
  6. 6.
    H. R. Jacobson, S. Corona, J. Capdevila, N. Chacos, S. Manna, A. Womack and J. R. Falck. 5,6 epoxyeicosatrienoic acid inhibits sodium absorption and potassium secretion in rabbit cortical collecting tubule. Kidney Int., 25:330 (1984) (abstract).Google Scholar
  7. 7.
    P. Sacerdoti, N. G. Abraham, J. C. McGiff, and M. L. Schwartzman. Renal cytochrome P-450 dependent metabolism of arachidonic acid in spontaneously hypertensive rats. Biochem. Pharmacol., 37:521–527 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    C. R. Pace-Asciak. Decreased renal prostaglandin catabolism precedes onset of hypertension in developing spontaneously hypertensive rats. Nature, 263:510–511 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    C. R. Pace-Asciak, M. C. Carrara, G. Rangaraj, and K. C. Nicolaou. Enhanced formation of PGI2: a potent hypotensive substance, by aortic rings and homogenates of the spontaneously hypertensive rat. Prostaglandins,15:1005–1012 (1978).PubMedGoogle Scholar
  10. 10.
    C. R. Pace-Asciak, M. C. Carrara, and K. C. Nicolaou. Prostaglandin 12 has more potent hypotensive properties than prostaglandin E2 in the spontaneously hypertensive rat. Prostaglandins, 15:999–1003 (1978).PubMedGoogle Scholar
  11. 11.
    P. Y.-K. Wong, J. C. McGiff, F. F. Sun, and K. U. Malik. Pulmonary metabolism of prostacyclin (PGI2) in the rabbit. Biochem. Biophys. Res. Commun., 83:731–738 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    H. J. Hawkins, B. J. Smith, K. C. Nicolaou, and T. E. Eling. Studies of the mechanisms involved in the fate of prostacyclin (PGI2) and 6-keto-PGF in the pulmonary circulation. Prostaglandins, 16:871–884 (1978).Google Scholar
  13. 13.
    X. R. He, and P. Y.-K. Wong. Transformation of prostacyclin (PGI2) to a biologically active metabolite: 5(6)-oxido-PGI2 by cyto-P450 dependent epoxygenase. FASEB J. 3:No. 3, 2714 (1989).Google Scholar
  14. 14.
    R. A. Johnson, F. H. Lincoln, E. G. Nidy, H. P. Schneider, J. L. Thompson and U. Axen. Synthesis and characterization of prostacyclin, 6-keto-prostaglandin F, prostaglandin I2, and prostaglandin 13. J. Amer. Chem. Soc., 100:7690–7693 (1980).CrossRefGoogle Scholar
  15. 15.
    P. Y.-K. Wong, J. C. McGiff, L. Cagen, K. U. Malik and F. F. Sun. Metabolism of prostacyclin in the rabbit kidney. J. Biol. Chem., 254:12–14 (1979).PubMedGoogle Scholar
  16. 16.
    E. H. Oliw, J. A. Lawson, H. R. Brash, J. A. Oates. Arachidonic acid metabolism in rabbit renal cortex: formation of two novel dihydroxyeicosatrienoic acids. J. Biol. Chem., 256:9924–9931 (1981).PubMedGoogle Scholar
  17. 17.
    P. Y.-K. Wong, K. U. Malik, D. M. Desiderio, J. C. McGiff and F. F. Sun. Hepatic metabolism of prostacyclin (PGI2) in the rabbit: formation of a potent novel inhibitor of platelet aggregation. Biochem. Biophys. Res. Commun.,93:486–494 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    M. J. S. Miller, E. G. Spokas and J. C. McGiff. Metabolism of prostaglandin E2 in the isolated perfused kidney of the rabbit. Biochem. Pharmacol. 31:2955–2960 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Manna, J. R. Falck, N. Chacos and J. Capdevile. Synthesis of arachidonic acid metabolites produced by purified kidney cortex microsomal cytochrome P450. Tetrahedron Letters, 24:33–36 (1983).CrossRefGoogle Scholar
  20. 20.
    N. R. Ferreri, M. Schwartzman, N. G. Ibraham, P. N. Chander and J. C. McGiff. Arachidonic acid metabolism in a cell suspension isolated from rabbit renal outer medulla. J. Pharmacol. Exp. Ther., 231:441–448 (1984).PubMedGoogle Scholar
  21. 21.
    M. Schwartzman, N. R. Ferreri, M. Carroll, N. Ibraham, R. D. Levere and J. C. McGiff. Arachidonic acid metabolism in isolated cells from the thick ascending limb of Henle’s loop. Clin. Res., 32:456A (1984) (abstract).Google Scholar
  22. 22.
    J. Capdevila, N. Chacos, J. R. Falck, S. Manna, A. Negro-Vilar and S. R. Ojeda. Novel hypothalamic arachidonate products stimulate somatostatin release from the median eminence. Endocrinology, 113:421–423 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    E. H. Oliw. Metabolism of 5(6) oxidoeicosatrienoic acid by ram seminal vesicles: formation of two stereoisomers of 5-hydroxyprostaglandin I. J. Biol. Chem., 259:2716–2721 (1984).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Patrick Y.-K. Wong
    • 1
  1. 1.Department of Physiology and MedicineNew York Medical CollegeValhallaUSA

Personalised recommendations