Advertisement

The Regulation of the Activaton of the Fibrinolysis System

  • A. Takada
  • T. Urano
  • Y. Takada
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 281)

Abstract

Fibrinolysis is a system in which fibrin clot dissolves due to the degradation of fibrin by plasmin, which is present in the blood as a precursor form, plasminogen (plg). A native form of plasminogen has glutamic acid at its N-terminus, and called as Glu-plg. Plasminogen is activated to plasmin by a group of enzymes, called plasminogen activators (PA). There are two pathways in the fibrinolysis system: the intrinsic pathway initiates upon the activation of a coagulation factor XII to XIIa in its interaction with a negatively charged foreign surface in the presence of high molecular weight kininogen and prekallikrein, and the other pathway, extrinsic pathway, initiates by PAs introduced in the blood exogenously from endothelial cells or upon the addition of bacterial activators such as streptokinase (SK).

Keywords

Plasminogen Activator Tissue Plasminogen Activator Tranexamic Acid Fibrinolysis System Chain Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. M. Booyse, J. Scheinbuks, J. Radek, G. Osikowicz, S. Fedor and A. J. Quarfoot, Immunological identification and comparison of plasminogen activator forms in cultured normal human endothelial cells and smooth muscle cells, Thromb. Res., 24:495–504 (1981).PubMedCrossRefGoogle Scholar
  2. 2.
    G. H. Goldsmith, N. P. Ziats, and A. L. Robertson, Studies on plasminogen activator and other proteases in subcultured human vascular cells, Exp. Mol. Pathol., 35:257–264 (1981).PubMedCrossRefGoogle Scholar
  3. 3.
    E. G. Levin, and D. J. Loskutoff, Cultured bovine endothelial cells produce both urokinase and tissue-type plasminogen activators, J. Cell Biol., 94:631–636 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    C. Nolan, L. S. Hall, G. H. Barlow and I. I. E. Tribby, Plasminogen activator from human embryonic kidney cell cultures. Evidence of a proactivator, Biochim. Biophys. Acta, 496:384–400 (1977).PubMedCrossRefGoogle Scholar
  5. 5.
    J.-D. Vassalli, J. M. Dayer, A. Wohlwend, and D. Belin, Concomitant secretion of prourokinase and of a plasminogen activator-specific inhibitor by cultured human monocytes-macrophages, J. Exp. Med., 159:1653–1668 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    T. C. Wun, L. Ossowski, and E. Reich, A proenzyme of human urokinase, J. Biol. Chem., 257:7262–7268 (1982).PubMedGoogle Scholar
  7. 7.
    L. Skriver, L. S. Nielsen, R. Stephens, and K. Danф, Plasminogen activator released as inactive proenzyme from murine cells transformed by sarcoma virus, Eur. J. Biochem.,124:409–414 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    G. Markus, The role of hemostasis and fibrinolysis in the metastatic spread of cancer, Semin. Thromb. Hemost.,10:61–70 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Rånby, N. Bergsdorf, and T. Nilsson, Enzymatic properties of the one-and two-chain form of tissue plasminogen activator, Thromb. Res., 27:175–183 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    D. C. Rijken, M. Hoylaerts, and D. Collen, Fibrinolytic properties of one-chain and two-chain human extrinsic (tissue-type) plasminogen activator, J. Biol. Chem.,257:2920–2925 (1982).PubMedGoogle Scholar
  11. 11.
    D. C. Stump, H. R. Lijnen, and D. Collen, Purification and characterization of single-chain urokinase-type plasminogen activator (scu-PA) from human cell cultures, J. Biol. Chem., 261:1274–1278 (1986).PubMedGoogle Scholar
  12. 12.
    A. Ichinose, W. Kisiel, and K. Fujikawa, Proteolytic activation of tissue plasminogen activator by plasma and tissue enzymes, FEBS Lett.,175:412–418 (1984).PubMedCrossRefGoogle Scholar
  13. 13.
    A. Ichinose, K. Fujikawa, and T. Suyama, The activation of prourokinase by plasma kallikrein and its inactivation by thrombin, J. Biol. Chem., 261:3486–3489 (1986).PubMedGoogle Scholar
  14. 14.
    L. A. Miles, and J. H. Griffin, The role of molecules immunologically related to urokinase in contact system-dependent fibrinolysis, in:“Fundamental and Clinical Fibrinolysis,” F. J. Castellino, P. J. Gaffney, M. M. Samama, and A. Takada, ed., Elsevier Science Publishers, B. V., Amsterdam, pp. 45–55 (1987).Google Scholar
  15. 15.
    F. Bachmann, and E, K. O. Kruithof, Tissue plasminogen activator: Chemical and physiological aspects, Semin. Thromb. Haemost., 10:6–17 (1984).CrossRefGoogle Scholar
  16. 16.
    V. Gurewich, R. Pannell, S. Louie, P. Kelley, R. L. Suddith and R. Greenlee, Effective and fibrin-specific clot lysis by a zymogen precursor form of urokinase (prourokinase). A study in vitro and in two animal species, J. Clin. Invest., 73:1731–1739 (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    T. Urano, V. S. de Serrano, P. J. Gaffney, and F. J. Castellino, Activation of human [Glu1] plasminogen by human single chain urokinase, Arch. Biochem. Biophys., 264:222–230 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    T. Urano, V. S. de Serrano, S. Urano, and F. J. Castellino, Stimulation by fibrinogen of the amidolytic activity of single-chain tissue plasminogen activator, Arch. Biochem. Biophys., 270:356–362 (1989).PubMedCrossRefGoogle Scholar
  19. 19.
    F. J. Castellino, B. A. K. Chibber, J. M. Beals, and V. S. de Serrano, The structure and activation of human plasminogen, in:“Fundamental and Clinical Fibrinolysis,” F. J. Castellino, P. J. Gaffney, M. M. Samama, and A. Takada, ed., Elsevier Science Publishers, B. V., Amsterdam, pp. 19–31 (1987).Google Scholar
  20. 20.
    A. Takada, and Y. Takada, Activation mechanisms of human plasminogen by streptokinase, urokinase or tissue plasminogen activator, in:“Fundamental and Clinical Fibrinolysis,” F. J. Castellino, P. J. Gaffney, M. M. Samama, and A. Takada, ed., Elsevier Science Publishers, B. V., Amsterdam, pp. 33–44 (1987).Google Scholar
  21. 21.
    A. Ichinose, K. Takio,and K. Fujikawa, Localization of the binding site of tissue-type plasminogen activator to fibrin, J. Clin. Invest., 78:163–169 (1986).PubMedCrossRefGoogle Scholar
  22. 22.
    L. Banyai, A. Varadi, and L. Patthy, Common evolutionary origin of the fibrin-binding structures of fibronectin and tissue-type plasminogen activator, FEBS Lett., 163:37–41 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    S. M. Camiolo, S. Thorsen, and T. Astrup, Fibrinogenolysis and fibrinolysis with tissue plasminogen activator, urokinase, streptokinase-activated human globulin, and plasmin, Proc. Soc. Exp. Biol. Med., 138:277–280 (1971).PubMedGoogle Scholar
  24. 24.
    S. Thorsen, P. Glas-Greenwalt, and T. Astrup, Differences in the binding to fibrin of urokinase and tissue plasminogen activator, Thromb. Diath. Haemorrh.,28:65–74 (1972).PubMedGoogle Scholar
  25. 25.
    M. Hoylaerts, D. C. Rijken, H. R. Lijnen, and D. Collen, Kinetics of the activation of plasminogen by human tissue plasminogen activator: role of fibrin, J. Biol. Chem.,257:2912–2919 (1982).PubMedGoogle Scholar
  26. 26.
    A. Takada, Y. Sugawara, and Y. Takada, Comparison of kinetic parameters of the activation of Glu-plasminogen by tissue plasminogen activator obtained from various sources, Haemostasis, 18:117–125 (1988).PubMedGoogle Scholar
  27. 27.
    Y. Sugawara, Y. Takada, K. Yamamoto, and A. Takada, Kinetic analyses of the enhancement of the activities of t-PA induced by the presence of monoclonal antibody (C9–5). Thromb. Res.,50:637–646 (1988).PubMedCrossRefGoogle Scholar
  28. 28.
    S. S. Husain, V. Gurewich, and B. Lipinski, Purification and partial characterization of a single-chain, high molecular weight form of urokinase from human urine, Arch. Biochem. Biophys., 220:31–38 (1983).PubMedCrossRefGoogle Scholar
  29. 29.
    C. Tran-Thang, E. K. O. Kruithof, and F. Bachmann, The mechanism of in vitro clot lysis induced by vascular plasminogen activator, Blood, 63:1331–1337 (1984).PubMedGoogle Scholar
  30. 30.
    H. R. Lijnen, C. Zamarron, M. Blaber, M. E. Winkler, and D. Collen, Activation of plasminogen by pro-urokinase. I. Mechanism, J. Biol. Chem.,261:1253–1258 (1986).PubMedGoogle Scholar
  31. 31.
    T. C. Wun, D. Schleuning, and E. Reich, Isolation and characterization of urokinase from human plasma, J. Biol. Chem., 257:3276–3283 (1982).PubMedGoogle Scholar
  32. 32.
    J. D. Tissot, P. H. Schneider, J. Hauert, M. Ruegg, E. K. O. Kruithof, and F. Bachmann, Isolation from human plasma of a plasminogen activator identical to urinary high molecular weight urokinase, J. Clin. Invest., 70:1320–1323 (1982).PubMedCrossRefGoogle Scholar
  33. 33.
    J.-D. Vassalli, D. Baccio, and D. Belin, A cellular binding site for the Mr 55,000 form of the human plasminogen activator, urokinase, J. Cell. Biol., 100:86–92 (1985).PubMedCrossRefGoogle Scholar
  34. 34.
    M. P. Stroppelli, A. Corti, A. Soffientini, G. Cassani, F. Blasi, and R. K. Associan, Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes, Proc. Natl. Acad. Sci. USA, 82:4939–4943 (1985).CrossRefGoogle Scholar
  35. 35.
    Y. Eeckhout, and G. Vaes, Further studies on the activation of procollagenase, the latent precursor of bone collagenase, Biochem. J., 166:21–31 (1977).PubMedGoogle Scholar
  36. 36.
    M. Paranjpe, L. Engel, N. Young, and L. A. Liotta, Activation of human breast carcinoma collagenase through plasminogen activator, Life Sci., 26:1223–1231 (1980).PubMedCrossRefGoogle Scholar
  37. 37.
    R. I. O’Grady, L. I. Upfold, and R. W. Stephens, Rat mammary carcinoma cells secrete active collagenase and activate latent enzyme in the stroma via plasminogen activator, Int. J. Cancer, 28:509–515 (1981).PubMedCrossRefGoogle Scholar
  38. 38.
    A. Rydzewski, Y. Takada, and A. Takada, Stimulation of plasmin-catalyzed conversion of single-chain to two-chain urokinase-type plasminogen activator by sulfated polysaccharides, Thromb. Haemost. 62:752–755 (1989).PubMedGoogle Scholar
  39. 39.
    E. G. Levin, Latent tissue plasminogen activator produced by human endothelial cells in culture: Evidence for an enzyme-inhibitor complex. Proc. Natl. Acad. Sci. USA, 80:6804–6808 (1983).PubMedCrossRefGoogle Scholar
  40. 40.
    J. A. van Mourik, D. A. Lawrence, and D. J. Loskutoff, Purification of an inhibitor of plasminogen activator (antiactivator) synthesized by endothelial cells. J. Biol. Chem., 259:14914–14921 (1984).PubMedGoogle Scholar
  41. 41.
    M. Philips, A. -G. Juul, and S. Thorsen, Human endothelial cells produce a plasminogen activator inhibitor and a tissue-type plasminogen activator-inhibitor complex, Biochim. Biophys. Acta, 802:99–110 (1984).PubMedCrossRefGoogle Scholar
  42. 42.
    E. D. Sprengers, J. H. Verheijen, V. W. M. van Hinsbergh, and J. J. Emeis, Evidence for the presence of two different fibrinolytic inhibitors in human endothelial cell conditioned medium, Biochim. Biophys. Acta 801:163–170 (1984).PubMedCrossRefGoogle Scholar
  43. 43.
    T. Kawano, K. Morimoto, and Y. Uemura, Urokinase inhibitor in human placenta, Nature, 217:175–180 (1968).CrossRefGoogle Scholar
  44. 44.
    L. Holmberg, I. Lecander, B. Persson, and B. Åstedt, An inhibitor from placenta specifically binds urokinase and inhibits plasminogen activator released from overian carcinoma in tissue culture, Biochim. Biophys. Acta 544:128–137 (1978).PubMedCrossRefGoogle Scholar
  45. 45.
    E. K. O. Kruithof, J.-D. Vassalli, W.-D. Schleuning, R. J. Mattaliano, and F. Bachmann, Purification and characterization of a plasminogen activator inhibitor from the histiocytic lymphoma cell line U 937, J. Biol. Chem., 261:11207–11213 (1986).PubMedGoogle Scholar
  46. 46.
    D. C. Stump, M. Thienpont, and D. Collen, Purification and characterization of a novel inhibitor of urokinase from human urine. Quantitation and preliminary characterization in plasma, J. Biol. Chem., 261:12759–12766 (1986).PubMedGoogle Scholar
  47. 47.
    M. J. Heeb, F. Espana, M. Geiger, D. Collen, D. C. Stump, and J. H. Griffin, Immunological identity of heparin-dependent plasma and urinary protein C inhibitor and plasminogen activator inhibitor-3, J. Biol. Chem., 262:15813–15816 (1987).PubMedGoogle Scholar
  48. 48.
    E. K. O. Kruithof, C. Tran-Thang, A. Ransijn and F. Bachmann, Demonstration of a fast-acting inhibitor of plasminogen activators in human plasma, Blood 64:907–913 (1984).PubMedGoogle Scholar
  49. 49.
    P. C. Roche, J. D. Campeau, and T. Shaw Jr., Comparative electrophoretic analysis of human and porcine plasminogen activators in SDS-polyacrylamide gels containing plasminogen and casein, Biochim. Biophys. Acta, 745:82–89 (1983).PubMedCrossRefGoogle Scholar
  50. 50.
    Y. Takada, and A. Takada, Measurements of the concentration of free plasminogen activator inhibitor (PAI-1) and its complex with tissue plasminogen activator in human plasma. Thromb. Res., Suppl. VIII:15–22 (1988).Google Scholar
  51. 51.
    T.-C. Wun, M. O. Palmier, N. R. Siegel, and C. E. Smith, Affinity purification of active plasminogen activator inhibitor-1 (PAI-1) using immobilized anhydrourokinase, J. Biol. Chem., 264:7862–7868 (1989).PubMedGoogle Scholar
  52. 52.
    A. Rydzewski, Y. Takada, and A. Takada, Determination of plasminogen activator inhibitor-1 (PAI-1) in plasma using two different anticoagulants and methods, Thromb. Res. 55:285–289 (1989).PubMedCrossRefGoogle Scholar
  53. 53.
    C. M. Hekman, and D. J. Loskutoff, Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants, J. Biol. Chem., 260:11581–11587 (1985).PubMedGoogle Scholar
  54. 54.
    E. D. Sprengers, V. W. M. van Hinsbergh, and B. G. Jansen, The active and the inactive plasminogen activator inhibitor from human endothelial cell conditioned medium are immunologically and functionally related to each other, Biochim. Biophys. Acta, 883:233–241 (1986).PubMedCrossRefGoogle Scholar
  55. 55.
    T. Sasaki, T. Moita, and S. Iwanaga, Identification of the plasminogen-binding site of human a2-plasmin inhibitor, J. Biochem., 99:1699–1705 (1986).PubMedGoogle Scholar
  56. 56.
    T. Urano, Y. Takada, and A. Takada, The enhanced activation of Glu-plasminogen by urokinase in the presence of fibrin or des A fibrin as measured by the release of B13 peptide and FDP, Thromb. Res., 36:429–435 (1984).PubMedCrossRefGoogle Scholar
  57. 57.
    A. Takada, Y. Makino, and Y. Takada, Release of N-terminal peptides from Glu-plasminogen by plasmin in the presence of fibrin, Thromb. Res., 41:819–827 (1986).PubMedCrossRefGoogle Scholar
  58. 58.
    A. Takada, T. Urano, and Y. Takada, Influence of coagulation on the activation of plasminogen by streptokinase and urokinase, Thromb. Haemostas., 42:901–908 (1979).Google Scholar
  59. 59.
    A. Takada, T. Ito, and Y. Takada, Interaction of plasmin with tranexamic acid and α2plasmin inhibitor in the plasma and clot, Thromb. Haemostas., 43:20–23 (1980).Google Scholar
  60. 60.
    S. A. Cederholm-Williams, The binding of plasminogen (mol. wt. 84,000) and plasmin to fibrin, Thromb. Res., 11:421–423 (1984).CrossRefGoogle Scholar
  61. 61.
    M. A. Lucas, L. J. Fretto, and P. A. McKee, The binding of human plasminogen to fibrin and fibrinogen, J. Biol. Chem., 258:4249–4256 (1983).PubMedGoogle Scholar
  62. 62.
    A. Varadi, and L. Patthy, Location of plasminogen-binding site sin human fibrin(ogen), Biochemistry, 22:2440–2446 (1983).PubMedCrossRefGoogle Scholar
  63. 63.
    Z. Wali, and L. Patthy, The fibrin binding sites of human plasminogen: arginine 32 and 34 are essential for fibrin affinity of the kringle 1 domain, J. Biol. Chem., 259:13690–13694 (1974).Google Scholar
  64. 64.
    W. Nieuwenhuizen, M. Voskuilen, A. Vermond, G. H. Veeneman, J. H. Van Boom, E. A. Klase, and N. D. Zegers, Studies on sites in fibrin(ogen) which are involved in the acceleration of plasminogen activation, catalyzed by tissue-type plasminogen activator, in:“Fundamental and Clinical Fibrinolysis,” F. J. Castellino, P. J. Gaffney, M. M. Samama, and A. Takada, ed., Elsevier Science publishers, B. V., Amsterdam pp. 57–65 (1987).Google Scholar
  65. 65.
    U. Christensen, The AH site of plasminogen and two C-terminal fragements. A weak lysine-binding site preferring ligands not carrying a free carboxylate function. Biochem. J.,223:413–421 (1984).PubMedGoogle Scholar
  66. 66.
    B, Norrman, P. Wallen, and M. Ranby, Fibrinolysis mediated by tissue plasminogen activator. Disclosure of a kinetic transition, Eur. J. Biochem.,149:193–201 (1985).CrossRefGoogle Scholar
  67. 67.
    E. Suenson, O, Lützen, and S. Thorsen, Initial plasmin degradation of fibrin as the basis of a positive feed back mechanism in fibrinolysis, Eur. J. Biochem., 140:513–522 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • A. Takada
    • 1
  • T. Urano
    • 1
  • Y. Takada
    • 1
  1. 1.Department of PhysiologyHamamatsu University School of MedicineHamamatsu-shi, ShizuokaJapan

Personalised recommendations