Skip to main content

Biological Properties of Hybrid Plasminogen Activators

  • Chapter
Fibrinogen, Thrombosis, Coagulation, and Fibrinolysis

Summary

A number of hybrid plasminogen activator genes were constructed from the t-PA and u-PA cDNAs and expressed using a bovine papilloma virus vector and mouse C-127 cells. Hybrid A was constructed by replacing the finger (F) and EGF domains of t-PA with the EGF and Ku domains of u-PA, while hybrids B and C had an extra Ku inserted before or after the double kringle (K1-K2) region of t-PA respectively. While all the hybrids showed comparable enzymatic activities towards a small substrate (S-2288), they had different activities in binding to fibrin clots as well in the fibrin-dependent plasminogen activation, the order of activities being: t-PA ≥ hybrid B > hybrid C > hybrid A. Carbohydrate analysis showed that while hybrid C, like rt-PA, had at least one high-mannose type sugar chain (probably at residue 117 in K1), the other hybrids had only complex-type carbohydrates suggesting that domain interaction in t-PA might influence glycan processing. Pharmacokinetic studies in dog showed that hybrid B had a significantly longer plasma half-life than rt-PA. Thrombolytic efficacies of hybrid B and rt-PA were compared in dog model using an artificially induced coronary thrombus. Complete thrombolysis was achieved with 18 mg and 50 mg dosages for hybrid B and rt-PA respectively. These data show the superior pharmacokinetic and thrombolytic properties of hybrid B compared to rt-PA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Collen, On the regulation and control of fibrinolysis. Thromb. Haemost., 43:77–89 (1980).

    PubMed  CAS  Google Scholar 

  2. A.-J. Tiefenbrunn, and B. E. Sobel, The impact of coronary thrombolysis of myocardial infarction. Fibrinolysis, 3:1–15 (1989).

    Google Scholar 

  3. N. U. Bang, Tissue-type plasminogen activator mutants. Theoretical and clinical considerations. Circulation, 79:1391–1392 (1989).

    Article  Google Scholar 

  4. H. R. Lijnen, and D. Collen, Tissue-type plasminogen activator. Ann. Biol. Clin., 45:198–201 (1987).

    CAS  Google Scholar 

  5. E. W. Davie, A. Inchinose, and S. P. Leytus, Structural features of the proteins participating in blood circulation and fibrinolysis. Cold Spring Harbor Symp. Quant. Biol., 51:509–514 (1986).

    Article  PubMed  CAS  Google Scholar 

  6. L. Patty, Evolution of the proteases of blood coagulation and fibrinolysis by assembly for modules. Cell, 41:657–663 (1985).

    Article  Google Scholar 

  7. J. W. McLean, J. E. Tomlinson, W.-J. Kuang, D. L. Eaton, E. Y. Chen, G. M. Fless, A. M. Scanu, and R. M. Lawn, cDNA sequence of human apolipoprotein (a) is homologous to plasminogen. Nature, 330:132–137 (1987).

    Article  PubMed  CAS  Google Scholar 

  8. H. Pannekoek, C. de Vries, and A.-J. van Zonneveld, Mutants of human tissue-type plasminogen activator (t-PA): Structural aspects and functional properties. Fibrinolysis, 2:123–132 (1988).

    CAS  Google Scholar 

  9. V. Gurewich, R. Pannell, S. Louie, P. Kelley, R. L. Suddith, and R. Greenlee, Effective and fibrin-specific clot lysis by a zymogen precursor form of urokinase (pro-urokinase): a study in vitro and in two animal species. J. Clin. Invest., 73:1731–1739 (1984).

    Article  PubMed  CAS  Google Scholar 

  10. S. G. Lee, N. K. Kalyan, J. Wilhelm, W.-T. Hum, R. Rappaport, S.-M. Cheng, S. Dheer, C. Urbano, R. W. Hartzell, M. Ronchetti-Blume, M. Levner, and P. P. Hung, Construction and expression of hybrid plasminogen activators prepared from tissue-type plasminogen activator and urokinase-type plasminogen activator genes. J. Biol. Chem., 263:2917–2924 (1988).

    PubMed  CAS  Google Scholar 

  11. M. Ranby, N. Bergsdorf, G. Pohl, and P. Wallen, Isolation of two variants of native one-chain tissue plasminogen activator. FEBS Letters, 146:289–292 (1982).

    Article  PubMed  CAS  Google Scholar 

  12. N. K. Kalyan, S. G. Lee, J. Wilhelm, K. P. Fu, W.-T. Hum, R. Rappaport, R. W. Hartzell, C. Urbano, and P. P. Hung, Structure-function analysis with tissue-type plasminogen activator: effect of deletion of NH2-terminal domains on its biochemical and biological properties. J. Biol. Chem., 263:3971–3978 (1988).

    PubMed  CAS  Google Scholar 

  13. G. Pohl, L. Kenne, B. Nilsson, and M. Einarsson, Isolation and characterization of three different carbohydrate chains from melanoma tissue plasminogen activator. Eur. J. Biochem., 170:69–75 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hung, P.P. et al. (1990). Biological Properties of Hybrid Plasminogen Activators. In: Liu, C.Y., Chien, S. (eds) Fibrinogen, Thrombosis, Coagulation, and Fibrinolysis. Advances in Experimental Medicine and Biology, vol 281. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3806-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3806-6_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6697-3

  • Online ISBN: 978-1-4615-3806-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics