Effects of Structural Modifications on the Properties of Tissue Plasminogen Activator (tPA)

  • Per Wallén
  • Xiang-Fei Cheng
  • Per-Ingvar Ohlsson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 281)


Physiological fibrinolysis is a proteolytic degradation of polymerized fibrin. A particular fibrinolytic enzyme system is present in blood. The central reaction in this system is the activation of a proenzyme, plasminogen, to the proteolytic enzyme plasmin. The activation is triggered by highly specialized proteases, plasminogen activators. One of these, the tissue plasminogen activator (tPA), is synthesized by endothelial cells and excreted to the blood on certain stimuli. Properties, which distinguish tPA from other types of plasminogen activators are a high affinity to fibrin and the very strong stimulation exerted by fibrin on tPA induced activation (2–3 orders of magnitude). These properties have evoked the idea of an efficient ternary activation complex between tPA, plasminogen and fibrin. The work on the isolation of tPA, the determination of its primary structure and gene structure as well as elucidation of its physicochemical properties has been performed by a large number of scientists. Several reviews have been published (e.g. Collen 1980; Rånby and Wallén 1985; Danö et al. 1985; Erickson et al. 1985; Wallén 1987). Fig. 1 shows the now well established primary structure* of wild tPA.


Plasminogen Activator Tissue Plasminogen Activator Plasminogen Activation Plasminogen Activator Activity Type Plasminogen Activator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahern, T. J., Morris, G. E., Barone, K. M., Horgan, P. G., Angus, L. B., Henson, K. S., Langer-Safir, P. R., Larsen, G. R., 1989, Distinguishing the sites in the amino-terminal region of tissue-type plasminogen activator (t-PA) required for efficient fibrinolytic activity and rapid clearance from the circulation. Thromb. Haemostas.,62:338.Google Scholar
  2. Cohen, D. 1980, On the regulation and control of fibrinolysis. Thromb. Haemostas., 43:77.Google Scholar
  3. Danö, K., Andreasen, P. A., Gröndal-Hansen, J., Kristensen, P., Nielsen, L. S., and Skriver, L. 1985, Plasminogen activators, tissue degradation and cancer. Advances in Cancer Research, 44:139.PubMedCrossRefGoogle Scholar
  4. Dodd, I., Fears, R. and Robinson, J. H. 1986, Isolation and preliminary characterization of active B-chain of recombinant tissue type plasminogen activator, Thromb. Haemostas.,55:94.Google Scholar
  5. Erickson, L. A., Schleef, R. R., Ny, T. and Loskutoff, D. J., 1985, The fibrinolytic system of the vascular wall, Clin. Haematol.,14:513.PubMedGoogle Scholar
  6. Fersht, A. R., 1972, Conformational equilibria in a-and o-Chymotrypsin, J. Mol. Biol., 64:497.PubMedCrossRefGoogle Scholar
  7. Gething, M.-J., Sambrook, J. and McGookey, D., 1989, Addition of an oligosaccharide side-chain at an epitopic site on the EGF-like domaine of t-PA prevents binding to specific receptors on hepatic cells, Thromb. Haemostas.,62:338.Google Scholar
  8. Heckel, A. and Hasselbach, K. M., 1988, Prediction of the three-dimensional structure of the enzymatic domaine of t-PA, J. Computer-Aided Mol. Des., 2:7.CrossRefGoogle Scholar
  9. Higgins, D. L. and Vehar, G. A., 1987, Interaction of one-chain and two-chain tissue plasminogen activator with intact and plasmin-degraded fibrin, Biochemistry, 26:7786PubMedCrossRefGoogle Scholar
  10. Ichinose, A., Takio, K. and Fujikawa, K., 1986, Localization of the binding site of tissue-type plasminogen activator to fibrin, J. Clin. Invest., 78:163.PubMedCrossRefGoogle Scholar
  11. Jörnvall, H., Pohl, G., Bergsdorf, N. and Wallén, P., 1983, Differential proteolysis and evidence for a residue exchange in tissue plasminogen activator suggest possible association between two types of protein microheterogeneity, FEBS Lett.,156:47.PubMedCrossRefGoogle Scholar
  12. Krause, J., 1988, Catabolism of tissue-type plasminogen activator (t-PA), its variants, mutants and hybrids, Fibrinolysis,2:133.Google Scholar
  13. Larsen, G. R., Henson, K. and Blue, Y., 1988, Variants of human tissue-type plasminogen activator: Fibrin binding, fibrinolytic and fibrinogenolytic characterization of genetic variants lacking fibronectin finger-like and/or the epidermal growth factor domaines, J. Biol. Chem., 263:1023.PubMedGoogle Scholar
  14. Madison, E. L. Goldsmith, E. J., Gerard, R. D., Gething, M.-J. and Sambrook, J. F., 1989,Serpin-resistant mutants of human tissue-type plasminogen activator, Nature, 339:721.PubMedCrossRefGoogle Scholar
  15. Matsudaira, P., 1987, Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes, J. Biol. Chem.,262:10035.PubMedGoogle Scholar
  16. Matsuo, O., Rijken, D.C. and Collen, D., 1981a, Comparison of the relative fibrinogenolytic, fibrinolytic and thrombolytic properties of tissue plasminogen activator and urokinase in vitro, Thromb. Haemostas., 45:225.Google Scholar
  17. Matsuo, O., Rijken, D. C. and Collen, D., 1981b, Thrombolysis by human tissue plasminogen activator and urokinase in rabbits with experimental pulmonary embolus, Nature, 291:590.CrossRefGoogle Scholar
  18. Mattson, C., Nyberg-Arrhenius, V. and Wallén, P., 1981, Dissolution of thrombi by tissue plasminogen activator, urokinase and streptokinase in an artificial circulating system, Thromb. Res.,21:535.CrossRefGoogle Scholar
  19. Nilsson T., Wallén, P. and Mellbring, G., 1984, In vivo metabolism of human tissue-type plasminogen activator, Scand. J. Haematol., 33:49.PubMedCrossRefGoogle Scholar
  20. Norrman, B., Wallén, P. and Rânby, M., 1985, Fibrinolysis mediated by tissue plasminogen activator: Disclosure of a kinetic transition, Eur. J. Biochem., 149:193.PubMedCrossRefGoogle Scholar
  21. Norrman, B., Pohl, G., Jörnvall, H. and Wallén, P., 1986, Proteolytically induced variations in the enzymatic properties of tissue plasminogen activator, Eur. J. Biochem., 159:7.PubMedCrossRefGoogle Scholar
  22. Norrman, B., Ohlsson, P.-I. and Wallén, P., 1988, Proteolytic modification of tissue plasminogen activator: Importance of the N-terminal part of the catalytically active B-chain for enzymatic activity, Biochemistry, 27:8325.PubMedCrossRefGoogle Scholar
  23. Pannekoek, H., de Vries, C. and van Zonneveld, A.-J., 1988, Mutants of human tissue-type plasminogen activator (t-PA): Structural aspects and functional properties, Fibrinolysis,2:123.Google Scholar
  24. Pennica, D., Holmes, W. E., Kohr, W. J., Harkins, R. N., Vehar, G. A., Ward, C. A., Bennet, W. F., Yelverton, E., Seeburg, P. H., Heyneker, H. L., Goeddel, D. V. and Collen, D., 1983, Cloning and expression of tissue-type plasminogen activator cDNA in E.coli, Nature, 301:214.PubMedCrossRefGoogle Scholar
  25. Petersen, L. C., Boel, E., Johannesen, M. and Foster, D., 1989, Possible involvement of a lysine residue in establishing the charge-relay system responsible for one-chain tPA activity, Thromb. Haemostas.,62:322.Google Scholar
  26. Rånby, M., 1982, Studies on the kinetics of the activation of plasminogen by tissue plasminogen activator, Biochim. Biophys. Acta, 704:461.PubMedCrossRefGoogle Scholar
  27. Rånby, M. and Wallén, P., 1985, Enzymatic properties of tissue-type plasminogen activator, in: Thrombolysis: biological and therapeutic properties of new thrombolytic agents, D. Collen, H. R. Lijnen and M. Verstraete, eds. Churchill Livingstone, Edinburgh, Vol.1:31.Google Scholar
  28. Rijken, D. C. and Groeneveld, E., 1986, Isolation and functional characterization of the heavy and light chains of human tissue-type plasminogen activator, J. Biol. Chem., 261:3098.PubMedGoogle Scholar
  29. Wallén, P., Rånby, M., Bergsdorf, N. and Kok, P., 1981, Purification and characterization of tissue plasminogen activator: on the occurrence of two different forms and their enzymatic properties, in: Progress in fibrinolysis, J. F. Davidson, I. M. Nilsson and B. Åstedt, eds. Churchill Livingstone, Edinburgh, Vol. 5:31.Google Scholar
  30. Wallén, P., Bergsdorf, N. and Rånby, M., 1982, Purification and identification of two structural variants of porcine tissue plasminogen activators by affinity adsorbtion on fibrin, Biochim. Biophys. Acta,719:318.PubMedCrossRefGoogle Scholar
  31. Wallén, P., Pohl, G., Bergsdorf, N., Rånby, M., Ny, T. and Jörnvall, H., 1983, Purification and characterization of a melanoma cell plasminogen activator, Eur. J. Biochem., 132:681.PubMedCrossRefGoogle Scholar
  32. Wallén, P., 1987, Structure and function of tissue plasminogen activator and urokinase, in: Fundamental and clinical fibrinolysis, F. J. Castellino, P. J. Gaffney, M. M. Samama and A. Takada, eds. Congress Ser. 757, Elsevier Science Publisher, Amsterdam, Exerpta Medica p:l.Google Scholar
  33. Weimar, W., Stibbe, J., Van Seyen, A. J., Billiau, A., De Somer, P. and Collen, D., 1981, Specific lysis of an iliofemoral thrombus by administration of extrinsic (tissue-type) plasminogen activator, Lancet, 2:1018.PubMedCrossRefGoogle Scholar
  34. Van Zonneveld, A. J., Veerman, H. and Pannekoek, H., 1986a, Autonomous functions of structural domains on human tissue-type plasminogen activator, Proc. Natl. Acad. Sci. USA, 83:4670.CrossRefGoogle Scholar
  35. Van Zonneveld, A. J., Veerman, H. and Pannekoek, H., 1986b, On the interaction of the finger and the kringle-2 domain of tissue-type plasminogen activator with fibrin, J. Biol. Chem., 261:14214.Google Scholar
  36. Verheijen, J. H., Caspers, M. P. M., Chang, G. T. G., deMunk, G. A. W., Pouwels, P. H. and Enger-Valk, B.E., 1986, Involvement of finger domain and kringle 2 domain of tissue-type plasminogen activator in fibrin binding and stimulation of activity by fibrin, EMBO J.,5:3525.PubMedGoogle Scholar
  37. Verstraete, M., Bounameaux, H., de Cock. F., Van de Werf, F. and Collen, D., 1985 Pharmacokinetics and systemic fibrinogenolytic effects of recombinant human tissue-type plasminogen activator in humans, J. Pharmacol. Exp. Ther., 235:506.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Per Wallén
    • 1
  • Xiang-Fei Cheng
    • 1
  • Per-Ingvar Ohlsson
    • 1
  1. 1.Department of Medical Biochemistry and BiophysicsUniversity of UmeåUmeåSweden

Personalised recommendations