Advertisement

Characterization of Snake Venom Principles Affecting Blood Coagulation and Platelet Aggregation

  • Chaoho Ouyang
  • Che-Ming Teng
  • Tur-Fu Huang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 281)

Abstract

Snake venoms can affect blood coagulation and platelet function in various ways (1–6). The literature is extensive on the use of snake venoms for elucidating the nature of the mechanisms of blood coagulation and platelet aggregation as well as for the need to understand snake venoms more fully. One of the main attractions for investigators in the field of hemostasis and thrombosis has been the use of venoms and venom components in practical laboratory tests, in clinical use, and more recently, for application in theoretical studies. In this article, the characteristics of snake venom principles affecting blood coagulation and platelet aggregation are reviewed. The mechanisms of action of snake venom principles affecting blood coagulation and platelet aggregation are summarized in Fig. 1.

Keywords

Platelet Aggregation Snake Venom Platelet Aggregation Inducer Crude Venom Thrombosis Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Boquet, Venins de serpents. Physiopthologie de I’envenimation et proprieties biologigues des venins, Toxicon, 2:5–44 (1954).CrossRefGoogle Scholar
  2. 2.
    J. M. Jimenez-Porras, Pharmacology of peptides and proteins in snake venoms, Annual Review of Pharmacology, 8:299–318 (1968).PubMedCrossRefGoogle Scholar
  3. 3.
    J. Meaume, Les venins de serpents agents modificateurs de la coagulation sanguine, Toxicon, 4:25–28 (1966).PubMedCrossRefGoogle Scholar
  4. 4.
    C. Ouyang, The effects of Formosan snake venoms on blood coagulation in vitro, Journal of the Formosan Medical Association, 56:435–448 (1957).Google Scholar
  5. 5.
    W. H. Seegers, and C. Ouyang, Snake venoms and blood coagulation, in: C. Y. Lee, ed., Snake venoms, Handbook of Experimental Pharmacology, Berlin-Heidelberg-New York: Springer-Verlag, 52:684–750 (1979).Google Scholar
  6. 6.
    C. Ouyang, C. M. Teng, and T. F. Huang, Characterization of the purified principles of Formosan snake venoms which affect blood coagulation and platelet aggregation, Journal of Formosan Medical Association,81:781–790 (1982).Google Scholar
  7. 7.
    J. Mellanby, The coagulation of blood, Part II. The action of snake venoms, peptone and leech extract, Journal of Physiology, 38:441–503 (1909).PubMedGoogle Scholar
  8. 8.
    B. A. Houssay, and A. Sordelia, Action des venins de serpents sur la coagulation sanguine, J. Physiol. Path. Gen., 18:731 (1919).Google Scholar
  9. 9.
    A. L. Copley, S. Banerjee, and A. Devi, Studies of snake venoms on blood coagulation. I. The thromboserpentin (thrombin-like) enzyme in the venoms, Thrombosis Research, 2:487–508 (1973).CrossRefGoogle Scholar
  10. 10.
    M. P. Esnouf, and G. W Tunnah, The isolation and properties of the thrombin-like activity from Ancistrodon rhodostoma venom, British Journal of Haematology,13:581–590 (1967).Google Scholar
  11. 11.
    C. Ouyang, and J. S. Hong Inhibition of the thrombin-like principle of Agkistrodon acutus venom by group-specific enzyme inhibitors, Toxicon, 12:449–453 (1974).PubMedCrossRefGoogle Scholar
  12. 12.
    C. Ouyang, J. S. Hong, and C. M. Teng, Purification and properties of the thrombin-like principle of Agkistrodon acutus venom and its comparison with bovine thrombin, Thrombosis et Diathesis haemorrhagica, 26:224–234 (1971).Google Scholar
  13. 13.
    C. Ouyang, C. M. Teng, J. S. Hong, Purification and properties of the coagulant and anticoagulant principles of Agkistrodon acutus venom, Journal of Formosan Medical Association, 71:401–407 (1972).Google Scholar
  14. 14.
    C. Ouyang, and F. Y. Yang, Purification and properties of the thrombin-like enzyme from Trimeresurus gramineus venom, Biochimica et Biophysica Acta, 351:354–363 (1974).Google Scholar
  15. 15.
    R. H. Herzig, O. D. Ratnoff, and J R Shainoff, Studies on a procoagulant fraction of southern copperthead snake venom: the preferential release of fibrinopeptide B, Journal of Laboratory and Clinical Medicine, 76:451 (1970).PubMedGoogle Scholar
  16. 16.
    C. Ouyang, Y. C. Chen, and C. M. Teng, The clotting activity of the thrombin-like enzyme of Agkistrodon acutus (Hundred pace snake) venom, Toxicon, 17:313–316 (1979).Google Scholar
  17. 17.
    W. R. Bell, Defibrinogenation with arvin in thrombic disorders. In Sherry S, Scriabine A, eds., Platelets and Thrombosis, Munich: Berlin, Vienna, Urban-Schwarzenberg, 274–298 (1974).Google Scholar
  18. 18.
    N. Egberg, Experimental and clinical studies on the thrombin-like enzymes from the venom of Bothrops atrox. On the primary structure of fragment E. Acta Physiologica Scandinavica supplement 400 (1973).Google Scholar
  19. 19.
    C. Funk, J. Gmur, R. Herold, and P. W. Straub, Reptilase -R- A new reagent in blood coagulation, British Journal of Haematology, 21:43–52 (1971).PubMedCrossRefGoogle Scholar
  20. 20.
    P. J. Gaffney, N. A. Marsh, and B. C. Whaler, a coagulant enzyme from gaboon viper venom: some aspects of its mode of action, Biochemical Society Transactions, 1:1208–1209 (1973).Google Scholar
  21. 21.
    F. S. Markland, and P. S. Damus, Purification and properties of a thrombin-like enzyme from the venom of Crotalus adamanteus,Journal of Biological Chemistry, 246:6460–6473 (1971).PubMedGoogle Scholar
  22. 22.
    W. H. Seegers, C. M. Teng, and E. Novoa, Preparation of bovine prethrombin 2: use of acutin and activation with prothrombinase or ecarin, Thrombosis Research, 19:11–20 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    C. M. Teng, and W. H. Seegers, Production of prothrombin fragment 1–44 with acutin and some effects on thrombin generation, Thrombosis Research, 20:217–279 (1980).CrossRefGoogle Scholar
  24. 24.
    W. H. Seegers, C. M. Teng, A. Ghosh, and E. Novoa, Three aspects of prothrombin activation related to protein M, ecarin, acutin, meizothrombin 1 and prethrombin 2, Annals of the New York Academy of Sciences, 370:453–467 (1981).PubMedCrossRefGoogle Scholar
  25. 25.
    C. M. Teng, and W. H. Seegers, Production of Factor X and Factor Xa variants with thrombin, acutin and by autolysis, Thrombosis Research, 22:213–220 (1981).PubMedCrossRefGoogle Scholar
  26. 26.
    C. Ouyang, and C. M. Teng, In vivo effects of the purified thrombin-like and anticoagulant principles of Agkistrodon acutus (Hundred pace snake) venom, Toxicon, 16:583–593 (1978).PubMedCrossRefGoogle Scholar
  27. 27.
    C. Ouyang, and C. M. Teng, The effect of the purified thrombin-like and anticoagulant principles of Agkistrodon acutus venom on blood coagulation in vivo, Toxicon, 14:49–54 (1976).Google Scholar
  28. 28.
    C. Ouyang, and F. Y. Yang, The effects of the purified thrombin-like enzyme and anticoagulant principle of Trimeresurus gramineus venom on blood coagulation in vivo, Toxicon, 14:197–201 (1976).Google Scholar
  29. 29.
    H. A. Reid, and K. E. Chan, The paradox in therapeutic defibrination, Lancet, 1:485486 (1968).Google Scholar
  30. 30.
    Z. S. Latallo, Report of the task force on clinical use of snake venom enzymes, Thrombosis and Haemostasis, 39:768–774 (1978).PubMedGoogle Scholar
  31. 31.
    G. H. Hall, H. M. Holman, and A. D. B. Webster, Anticoagulation by ancrod for haemodialysis, British Medical Journal, 4:591–593 (1970).PubMedCrossRefGoogle Scholar
  32. 32.
    C. Ouyang, and C. M. Teng, Fibrinogenolytic enzymes of Trimeresurus muscrosquamatus venom, Biochimica et Biophysica Acta,420:298–308 (1976).CrossRefGoogle Scholar
  33. 33.
    C. Ouyang, and T. F. Huang, Purification and characterization of the fibrinolytic principle of Agkistrodon acutus venom, Biochimica et Biophysica Acta, 439:146–153 (1976).CrossRefGoogle Scholar
  34. 34.
    C. Ouyang, C. M. Teng, and Y. C. Chen, Physicochemical properties of α-and β-fibrinogenases of Trimeresurus mucrosquamatus venom, Biochimica et Biophysica Acta, 481:622–630 (1977).CrossRefGoogle Scholar
  35. 35.
    C. Ouyang, and T. F. Huang, The properties of the purified fibrinolytic principle from Agkistrodon acutus snake venom, Toxicon, 15:161–167 (1977).Google Scholar
  36. 36.
    C. Ouyang, and T. F. Huang, α- and β-fibrinogenases from Trimeresurus gramineus snake venom, Biochimica et Biophysica Acta, 571:270–283 (1979).PubMedCrossRefGoogle Scholar
  37. 37.
    C. Ouyang, C. M. Teng, Y. C. Cheng, Properties of fibrinogen degradation products produced by α- and β-fibrinogenases of Trimeresurus mucrosquamatus snake venom, Toxicon,17:121–126 (1979).PubMedCrossRefGoogle Scholar
  38. 38.
    C. Ouyang, L. J. Hwang, and T. F. Huang, a-Fibriongenase from Agkistrodon rhodostoma (Malayan pit viper) snake venom, Toxicon, 21:25–33 (1983).PubMedCrossRefGoogle Scholar
  39. 39.
    T. Nikai, R. Kito, N. Mori, H. Sugihara, and A. T. Tu, Comparative Biochemical Physiology, 76B:679–686 (1983).Google Scholar
  40. 40.
    Z. Z. Sapru, A. T. Tu, and G. S. Bailey, Purification and characterization of a fibrinogenase from the venom of western diamondback rattlesnake (Crotalus atrox),Biochimica et Biophysca Acta, 747:225–231 (1983).CrossRefGoogle Scholar
  41. 41.
    T. Nikai, N. Mori, M. Kishida, H. Sugihara, and A. T. Tu, Archieves of Biochemistry and Biophysics, 231:309–319 (1984).CrossRefGoogle Scholar
  42. 42.
    C. M. Teng, C. Ouyang, and S. C. Lin, Species difference in the fibrinogenolytic effects of a-and 13-fibrinogenases from Trimeresurus mucrosquamatus snake venom, Toxicon (Oxford), 23:777–782 (1985).CrossRefGoogle Scholar
  43. 43.
    A. Schieck, F. Kornalik, and E. Habermann, The prothrombin activating principle from Echis carinatus venom, I. Preparation and biochemical properties, NaunynSchiedeberg’s Archives of Pharmacology, 272:402–416 (1972).CrossRefGoogle Scholar
  44. 44.
    A. Schieck, E. Habermann, and F. Kornalik, The prothrombin activating principle from Echis carinatus venom. II. Coagulation studies in vitro and in vivo. NaunynSchmiedeberg’s Archives of Pharmacology, 274:7–17 (1972).PubMedCrossRefGoogle Scholar
  45. 45.
    E. Novoa, and W. H. Seegers, Mechanism of a-thrombin and /3-thrombin-E formation: Use of Ecarin for isolation of meizo-thrombin I,Thrombosis Research,18:657–668 (1980).PubMedCrossRefGoogle Scholar
  46. 46.
    C. Bon, and H. Hofmann, Prothrombin and Factor X activators from Bothrops atrox venom, Toxicon, 23:553 (1985).Google Scholar
  47. 47.
    C. Ouyang, and C. M. Teng, Purification and properties of the anticoagulant principle of Agkistrodon acutus venom, Biochimica et Biophysica Acta, 278:155–162 (1972).PubMedCrossRefGoogle Scholar
  48. 48.
    C. Ouyang, and C. M. Teng, The effect of the purified anticoagulant principle of Agkistrodon acutus venom on blood coagulation, Toxicon,11:287–292 (1973).PubMedCrossRefGoogle Scholar
  49. 49.
    C. Ouyang, and F. Y. Yang, Purification and properties of the anticoagulant principle of Trimeresurus gramineus venom, Biochimica et Biophysica Acta, 386:479–492 (1975).PubMedCrossRefGoogle Scholar
  50. 50.
    C. Ouyang, C. M. Teng, Y. C. Chen, and S. C. Lin, Purification and characterization of the anticoagulant principle of Trimeresurus mucrosquamatus venom, Biochimica et Biophysica Acta, 541:394–407 (1978).CrossRefGoogle Scholar
  51. 51.
    C. Ouyang, W. Jy, Y. P. Zan, and C. M. Teng, Mechanism of the anticoagulant action of phospholipase A purified from Trimeresurus mucrosquamatus (Formosan Habu)snake venom, Toxicon,19:113–120 (1981).PubMedCrossRefGoogle Scholar
  52. 52.
    C. M. Teng, and W. H. Seegers, Agkistrodon acutus snake venom inhibits prothrombinase complex formation, Thrombosis Research,23:255–263 (1981).PubMedCrossRefGoogle Scholar
  53. 53.
    M. C. Boffa, C. Rothen, B. Verhelj, R. Verger, and G. De Haas, Enzymatic and anticoagulant activity of phospholipase A2, Toxicon, 17:supplement No. 1, p. 11 (1979).Google Scholar
  54. 54.
    M. Arthus, Actions coagulants et anticoagulants des venins, Archives Internationales de Physiologie, 15:203 (1919).Google Scholar
  55. 55.
    T. Ri, Folia Pharmacologica Japonica, 27:13 (1939).Google Scholar
  56. 56.
    C. Y. Lee, Toxicological studies on the venom of Vipera russellii formosensis,Maki. Part 1. Toxicity and Pharmacological Properties, Journal of the Formosan Medical Association,47:65–84 (1948).Google Scholar
  57. 57.
    C. Y. Lee, S. A. Johnson, and W. H. Seegers, Clotting of blood with Russell’s viper venom, Journal of Michigan State Society of Medicine, 54:801–804 (1955).Google Scholar
  58. 58.
    M. P. Esnouf, and W. J. Williams, The isolation and purification of a bovine plasma protein which is a substrate for the coagulation fraction of Russell’s viper venom, Biochemical Journal, 84:62–71 (1962).PubMedGoogle Scholar
  59. 59.
    S. Schiffman, I. Theodor, and S. I. Rapaport, Separation from Russell’s viper venom of one fraction reacting with Factor X and another reacting with Factor V. Biochemistry, 8:1397–1405 (1969).PubMedCrossRefGoogle Scholar
  60. 60.
    W. Kisiel, M. A. Hermondson, and E. W. Davie, Interaction of Lanthanide ions with bovine factor X and their use in the affinity chromatography of the venom coagulant protein of Vipera russellii, Biochemistry, 15:4901–4906 (1976).PubMedCrossRefGoogle Scholar
  61. 61.
    G. W. Amphlet, R. Byrne, and F. Castellino, Cation binding properties of the multiple subforms of Russell’s viper venom Factor X activating enzyme, the coagulant protein from Vipera russellii venom, Biochemistry, 21:125–132 (1982).CrossRefGoogle Scholar
  62. 62.
    K. Stocker, and J. Meier, Thrombin-like snake venom enzymes, Proc. Symp. on Animal Venoms and Haemostasis, San Diego CA, July 20–21 (1985).Google Scholar
  63. 63.
    K. Stocker, H. Fischer, J. Meier, M. Brogil, and L. Svendsen, Protein C activators in snake venoms, Behring Inst. Mitt., 79:37 (1986).PubMedGoogle Scholar
  64. 64.
    J. L. Martionli, and K. Stocker, Fast functional protein C assay using Protac®, a novel protein C activator, Thrombosis Research, 43:253–264 (1986).Google Scholar
  65. 65.
    H. Loebermann, H. J. Kolde, R. Denbel, R. Peter, E. Tourte, and U. Becker, Determination of protein C in plasma, Behring Inst. Mitt., 79:112 (1986).Google Scholar
  66. 66.
    T. Exner, B. Cotton, and M. Howden, Detection of specific proenzyme activators in snake venoms by a new immunoabsorbant chromogenic substrate method, iochimica et Biophysica Acta, 832:351 (1985).Google Scholar
  67. 67.
    B. C. Furie, and B. Furie, Factor X activating enzyme from Russell’s viper venom: isolation and characterization, Journal of Biological Chemistry,250:601–608 (1975).Google Scholar
  68. 68.
    M. G. Davey, and E. F. Löscher, Action of some coagulant snake venoms upon blood platelets, Nature, 207:1037–1039 (1965).CrossRefGoogle Scholar
  69. 69.
    M. G. Davey, and M. P. Esnouf, The isolation of a component of the venom of Trimeresurus okinavenis that causes the aggregation of blood platelet, Biochemistry,111:733–743 (1969).Google Scholar
  70. 70.
    C. Ouyang, and C. M. Teng, The effect of Trimeresurus mucrosquamatus snake venom on platelet aggregation, Toxicon, 16:575–582 (1978).PubMedCrossRefGoogle Scholar
  71. 71.
    C. Ouyang, J. P. Wang, and C. M. Teng, A potent platelet aggregation inducer purified from Trimeresurus mucrosquamatus snake venom, Biochimica et Biophysica Acta, 630:246–253 (1980).PubMedCrossRefGoogle Scholar
  72. 72.
    C. Ouyang, and C. M. Teng, The action mechanism of the purified platelet aggregation principle of Trimeresurus mucrosquamatus venom, Thrombosis and Haemostasis, 41:475–490 (1979).PubMedGoogle Scholar
  73. 73.
    C. M. Teng, K. K. Liao, J. P. Wang, H. S. Lin, and C. Ouyang, Ultrastructural changes and release reaction of platelets induced by an aggregation inducer purified from Trimeresurus mucrosquamatus (Formosan Habu) snake venom, Toxicon, 19:121–130 (1981).PubMedCrossRefGoogle Scholar
  74. 74.
    C. Ouyang, and T. F. Huang, A potent platelet aggregation inducer from Trimeresurus gramineus snake venom, Biochimica et Biophysica Acta, 761:126–134 (1983).PubMedCrossRefGoogle Scholar
  75. 75.
    E. P. Kirby, S. Niewiarowski, K. Stocker, E. Kettner, E. Shaw, and T. M. Brudzynski, Biochemistry, 18:3564–3570 (1979).PubMedCrossRefGoogle Scholar
  76. 76.
    S. Niewiarowski, E. P. Kirby, T. M. Brudzynski, and K. Stocker, Thrombocytin, a serine protease from Bothrops atrox venom. 2. Interaction with platelets and plasma-clotting factors, Biochemistry, 18:3570–3577 (1979).PubMedCrossRefGoogle Scholar
  77. 77.
    A. H. Schmaier, W. Claypool, and R. W. Colman, Crotalocytin: Recognition and purification of a timber rattlesnake platelet aggregating protein, Blood, 56:1013–1019 (1980).PubMedGoogle Scholar
  78. 78.
    A. H. Schmaier, and R. W. Colman, Crotalocytin: Characterization of the timber rattlesnake platelet activating protein, Blood, 56:1020–1028 (1980).PubMedGoogle Scholar
  79. 79.
    F. Markwardt, W. Barthel, E. Glusa, and M. Hoffman, Über die Freisatzung biogener Amine aus Blutpättchen durch tierische Gifte. N-S Archiv für experimentelle Pathologie und Pharmakologie, 252:297 (1966).Google Scholar
  80. 80.
    J. Prado-Francesci, Thesis, University of Campinas, Brazil (1970).Google Scholar
  81. 81.
    B. B. Vargaftig, J. Prado-Franceschi, M. Chignard, J. Lefort, and G. Marlas, European Journal of Pharmacology, 68:451–464 (1980).PubMedCrossRefGoogle Scholar
  82. 82.
    B. B. Vargaftig, M. Chignarad, J. Benveniste, J. Lefort, and F. Wal, Annals of New York Academy of Sciences, 370:119–137 (1981).CrossRefGoogle Scholar
  83. 83.
    G. Marias, D. Joseph, and C. Huet, Biochimie, 65:619–628 (1983).Google Scholar
  84. 84.
    J. Prado-Franceschi, D. Q. Tavares, R. Heritel, and Lobo de Araujo, Effects of convulxin, a toxin from rattlesnake venom, on platelets and leukocytes of anesthetized rabbits, Toxicon,19:661–666 (1981).PubMedCrossRefGoogle Scholar
  85. 85.
    G. Marias, The potent platelet-activating glycoprotein from the venom of Crotalus durissus cascavella: Separation and characterization of its a and ß subunits, Toxicon, 23:592 (1985).Google Scholar
  86. 86.
    C. Ouyang, Y. H. Ma, H. C. Jih, and C. M. Teng, Characterization of the platelet aggregation inducer and inhibitor from Echis carinatus snake venom, Biochimica et Biophysica Acta, 841:1–7 (1985).PubMedCrossRefGoogle Scholar
  87. 87.
    C. M. Teng, Y. H. Ma, and C. Ouyang, Action mechanism of the platelet aggregation inducer and inhibitor from Echis carinatus snake venom, Biochimica et Biophysica Acta, 841:8–14 (1985).PubMedCrossRefGoogle Scholar
  88. 88.
    C. Ouyang, and T. F. Huang, Platelet aggregation inhibitor from Trimeresurus grmineus snake venom, Biochimica et Biophysica Acta, 757:332–341 (1983).Google Scholar
  89. 89.
    T. F. Huang, and C. Ouyang, Action mechanism of the potent platelet aggregation inhibitor from Trimeresurus gramineus snake venom, Thrombosis Research, 33:124138 (1984).Google Scholar
  90. 90.
    C. Ouyang, H. I. Yeh, and T. F. Huang, A potent platelet aggregation inhibitor purified from Agkistrodon halys (Mamushi) snake venom, Toxicon, 21:797–804 (1983).PubMedCrossRefGoogle Scholar
  91. 91.
    T. F. Huang, H. I. Yeh, and C. Ouyang, Mechanism of action of the platelet aggregation inhibitor purified from Agkistrodon lys (Mamushi) snake venom, Toxicon, 22:243–251 (1984).Google Scholar
  92. 92.
    C. Ouyang, L. J. Hwang, and T. F. Huang, Inhibition of rabbit platelet aggregation by a-fibrinogenase purified from Agkistrodon rhodostoma (Malyan pit viper) snake venom, Journal of the Formosan Medical Association, 84:1197–1206 (1985).Google Scholar
  93. 93.
    C. Ouyang, and T. F. Huang, Inhibition of platelet aggregation by 5’-nucleotidase purified from Trimeresurus gramineus snake venom, Toxicon, 21:491–501 (1983).PubMedCrossRefGoogle Scholar
  94. 94.
    C. Ouyang and T. F. Huang, Platelet aggregation inhibitors from Agkistrodon acutus snake venom, Toxicon, 24:1099–1106 (1986).PubMedCrossRefGoogle Scholar
  95. 95.
    T. F. Huang, Y. J. Wu, and C. Ouyang, Characterization of platelet aggregation inhibitor from Agkistrodon rhodostoma venom, Biochimica et Biophysica Acta, 925:248–257 (1987).PubMedCrossRefGoogle Scholar
  96. 96.
    C. M. Teng, W. Jy, and C. Ouyang, Cardiotoxin from Naja naja atra snake venom: a potentiator of platelet aggregation, Toxicon, 22:463–470 (1984).PubMedCrossRefGoogle Scholar
  97. 97.
    C. M. Teng, Y. H. Chen, and C. Ouyang, Biphasic effect on platelet aggregation by phospholipase A purified from Vipera russellii snake venom, Biochimica et Biophysica Acta, 772:393–402 (1984).PubMedCrossRefGoogle Scholar
  98. 98.
    C. Ouyang, and T. F. Huang, Effect of the purified phospholipases A2 from snake and bee venoms on rabbit platelet function, Toxicon, 22:705–718 (1984).PubMedCrossRefGoogle Scholar
  99. 99.
    M. S. Read, R. W. Shermer, and K. M. Brinkhous, Venom coagglutinin: An activator of platelet aggregation dependent on von Willebrand factor. Proceedings of the National Academy of Sciences, U.S.A. 75:4514–4518 (1978).CrossRefGoogle Scholar
  100. 100.
    M. S. Read, J. Y. Potter, and K. M. Brinkhous, Venom coagglutinin for detection of von Willebrand factor activity in animal plasmas, J. Lab. Clin. Medicine, 101:74–82 (1983).Google Scholar
  101. 101.
    S. Shiau, and C. Ouyang, Isolation of coagulant and anticoagulant principles from the venom of Trimeresurus gramineus,Toxicon,2:213–220 (1965).CrossRefGoogle Scholar
  102. 102.
    H. C. Cheng, and C. Ouyang, Isolation of coagulant and anticoagulant principles from the venom of Agkistrodon acutus, Toxicon, 4:235–243 (1967).PubMedCrossRefGoogle Scholar
  103. 103.
    C. M. Teng, Y., P. Kuo, L. G. Lee, and C. Ouyang, Effect of cobra venom phospholipase A2 on platelet aggregation in comparison with those produced by arachidonic acid and lysophosphatidylcholine, Thrombosis Research, 44:875–886 (1986).PubMedCrossRefGoogle Scholar
  104. 104.
    C. M. Teng, Y. P. Kuo, L. G. Lee, and C. Ouyang, Characterization of the anticoagulants from Taiwan cobra (Naja naja atra) snake venom, Toxicon, 25:201–210 (1987).PubMedCrossRefGoogle Scholar
  105. 105.
    E. Habermann, Über das thrombinähnlich wirkende Prinzip von Jararacagift, Archiv für Experimentelle Pathologie und Pharmacologie, 234:291 (1958).Google Scholar
  106. 106.
    A. Magalhäes, G. J. de Oliveira, and C. R. Diniz, Purification and partial characterization of a thrombin-like enzyme from the venom of the bushmaster snake, Lachesis muta noctivaga, Toxicon, 19:279–294 (1981).PubMedCrossRefGoogle Scholar
  107. 107.
    N. A. Narsh, and B. C. Whaler, Separation and partial characterization of a coagulant enzyme from Bitis gabonica venom, British Journal of Haematology, 26:295–306 (1974).CrossRefGoogle Scholar
  108. 108.
    W. H. Holleman, and L. J. Weiss, The thrombin-like enzyme from Bothrops atrox snake venom: Properties of the enzyme purified by affinity chromatography of p-aminobenzamidine substitute agarose, Journal of Biological Chemistry, 251:16631669 (1976).Google Scholar
  109. 109.
    C. A. Bonilla, Defibrinating enzyme from Timber rattlesnake (Crotalus h. horridus) venom: a potential agent for therapeutic defibrination, I. Purification and properties, Thrombosis Research, 6:151–169 (1975).PubMedCrossRefGoogle Scholar
  110. 110.
    L. Andersson, Isolation of thrombin-like activity from the venom of Trimeresurus okinavensis, Haemostasis, 1:31–43 (1972).PubMedGoogle Scholar
  111. 111.
    K. Stocker, and G. H. Barlow, The coagulant enzyme from Bothrops atrox venom (Batroxobin), Methods in Enzymology, 45:214–223 (1976).PubMedCrossRefGoogle Scholar
  112. 112.
    P. J. Gaffney, N. A. Marsh, and Talalak, South East Asian Journal of Tropical Medicine and Public Health, 10:258–265 (1979).Google Scholar
  113. 113.
    D. Nolan, L. S. Hall, and G. H. Barlow, Ancrod, the coagulating enzyme from malayan pit viper (Agkistrodon rhodostoma) venom, Methods in Enzymology, 45:205–213 (1976).PubMedCrossRefGoogle Scholar
  114. 114.
    F. S. Markland, Crotalase, Methods in Enzymology,45:223–236 (1976).Google Scholar
  115. 115.
    L. F. Guan, X. Zhang, and C. W. Chi, Different mechanism of fibrin polymerization and fibrinopeptide release induced by human thrombin and thrombin-like enzyme (TLE) from the snake venom of Agkistrodon halys pallas, Thrombosis and Haemostasis, 54:313 (1985).Google Scholar
  116. 116.
    S. S. Bajwa, F. S. Markland, and F. E. Russel, Fibrinolytic enzymes in western diamondback rattlesnake (Crtalus atrox) venom, Toxicon, 18:285–290 (1980).PubMedCrossRefGoogle Scholar
  117. 117.
    S. S. Bajwa, F. S. Markland, and F. E. Russell, Fibrinolytic and Fibrinogen clotting enzymes present in the venoms of western diamondback rattlesnake, Crotalus atrox, eastern diamondback rattlesnake, Crotalus adamanteus,and southern pacific rattlesnake, Crotalus viridis helleri, Toxicon, 19:53–59 (1981).PubMedCrossRefGoogle Scholar
  118. 118.
    S. S. Bajwa, H. Kirakossian, K. N. N. Reddy, and F. S. Markland, Thrombin-like and fibrinolytic enzymes in the venoms from the gaboon viper (Bitis gabonica), eastern cottonmouth moccasin (Agkistrodon p. piscivorus) and southern copperhead (Agkistrodon c. contortrix) snakes, Toxicon, 20:427–432 (1982).PubMedCrossRefGoogle Scholar
  119. 119.
    K. W. E. Denson, Coagulant and anticoagulant action of snake venoms, Toxicon, 7:5–11 (1969).PubMedCrossRefGoogle Scholar
  120. 120.
    K. W. E. Denson, R. Borrett, and R. Biggs, The specific assay of prothrombin using the Taipan snake venom, British Journal of Haematology, 21:219–226 (1971).PubMedCrossRefGoogle Scholar
  121. 121.
    J. Rosing, H. Speijer, J. W. P. Govers-Riemslag, G. Trans, and R. F. A. Zwaal, Purification and properties of prothrombin activators from the venom of Notechis scutatus scutatus and Oxyuranus scutellatus, Thrombosis and Haemostasis, 54:312 (1985).Google Scholar
  122. 122.
    R. G. Macfarlane, and B. Barnett, The hemostatic possibilities of snake venom, Lancet, ií:985–987 (1934).Google Scholar
  123. 123.
    K. W. E. Denson, F. E. Russell, D. Almagro, and R. C. Bishop, Characterization of the coagulant activity of some snake venoms, Toxicon, 10:557–562 (1972).PubMedCrossRefGoogle Scholar
  124. 124.
    A. J. Quick, Thromboplastin generation: Effect of the Bell-Alton reagent and Russell’s viper venom on prothrombin consumption, American Journal of Clinical Pathology,55:555–560 (1971).PubMedGoogle Scholar
  125. 125.
    C. Bon, and H. Hofmann, Prothrombin and Factor X activators from Bothrops atrox venom, Toxicon, 23:553 (1985).Google Scholar
  126. 126.
    T. B. Lo, Y. H. Chen, and C. Y. Lee, Chemical studies of Formosan cobra (Naja naja atra) venom. Part I. Chromatographic separation of crude venom on CM Sephadex and preliminary characterization of its components, Journal of Chinese Chemical Society, 13:25 (1966).Google Scholar
  127. 127.
    C. M. Teng, Y. H. Chen, and C. Ouyang, Purification and properties of the main coagulant and anticoagulant principles of Vipera russellii snake venom, Biochimica et Biophysica Acta,786:204–212 (1984).PubMedCrossRefGoogle Scholar
  128. 128.
    Z. S. Latallo, and E. Teisseyre, Evaluation of Reptilase-R and thrombin clotting time in the presence of fibrinogen degradation products and heparin, Scandinavian Journal of Haematology (Supplement),13:261–266 (1971).Google Scholar
  129. 129.
    L. L. Phillips, H. J. Weiss, and N. P. Christy, Effects of puff adder venom on the coagulation mechanism II. In Vitro, Thrombosis et Diathesis Haemorrhagica,30:499508 (1973).Google Scholar
  130. 130.
    K. Stocker, H. Fischer, J. Meier, M. Brogli, and L. Svendsen, Characterization of the protein C activator Protac® from the venom of the southern copperhead (Agkistrodon contortrix) snake, Toxicon, 25:239–252 (1987).PubMedCrossRefGoogle Scholar
  131. 131.
    T. F. Huang, J. C. Holt, H. Lukasiewicz, and S. Niewiarowski, Trigramin, a low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb/IIIa complex, The Journal of Biological Chemistry, 262:16157–16163 (1987).PubMedGoogle Scholar
  132. 132.
    T. F. Huang, C. Z. Liu and C. Ouyang, Halysin, a potent platelet aggregation inhibitor, inhibits the fibrinogen binding to the activated platelets, Thrombosis and Haemostasis,62:112 (1989).Google Scholar
  133. 133.
    T. F. Huang, C. Z. Liu, W. J. Wang and C. Ouyang, Characterization of the Trigraminlike peptides from snake venoms, the specific antagonists of the fibrinogen receptor on human platelets. Proceedings of the International Scientific Symposium on Fibrinogen, Thrombosis, Coagulation and Fibrinolysis, Taipei, A-054 (1989).Google Scholar
  134. 134.
    C. Ouyang, M. L. Hung and C. M. Teng, Effect of Trimeresurus snake venoms on platelet aggregation, Proceedings of 9th World Congress on Animal, Plant and Microbial Toxins, p. 39 (1988).Google Scholar
  135. 135.
    C. Oyuang, M. L. Hung, T. F. Huang, and C. M. Teng, Effects of Trimucytin and Triwagulerin, platelet aggregation inducers isolated from Trimeresurus mucrosquamatus and Trimeresurus wagleri snake venoms on aggregation of rabbit platelets, Thrombosis and Haemostasis,62:338 (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Chaoho Ouyang
    • 1
  • Che-Ming Teng
    • 1
  • Tur-Fu Huang
    • 1
  1. 1.Pharmacological Institute, College of MedicineNational Taiwan UniversityTaipeiTaiwan, ROC

Personalised recommendations