Advertisement

Multiple Epitope Specificity of Monoclonal Antibodies to a Single Synthetic Peptide: Use in the Characterization of the GP IIb-IIIa Binding Domain of Von Willebrand Factor

  • Shlomo A. Berliner
  • Richard A. Houghten
  • James R. Roberts
  • Zaverio M. Ruggeri
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 281)

Abstract

Monoclonal antibodies have been induced against the synthetic peptide with sequence Tyr-Glu-Val-Val-Thr-Gly-Ser-Pro-Arg-Gly-Asp-Ser-Gln-Ser-Ser. This peptide represents residues Glu1737-Ser1750 of the mature von Willebrand factor (vWF) subunit and contains the sequence Arg-Gly-Asp, thought to be important in mediating binding to the platelet receptor glycoprotein (GP) IIb-IIIa complex. Twelve antibodies were obtained, eight of which bound to native vWF as well as to the peptide immunogen insolubilized onto agarose beads. These antibodies defined at least three distinct epitopes, as demonstrated by antibody interaction with peptides having a single phenylalanine substitution at each position in the sequence. In particular, two antibodies bound to epitopes on vWF that included one or more of the three residues (arginine, glycine, aspartic acid) thought to be involved in binding to GP IIb-IIIa, whereas one antibody bound to an epitope that did not include any of those residues. Nevertheless, the three antibodies cross-reacted with each other, a finding explained by the fact that the corresponding epitopes had at least two residues in common, namely G1y1741 and Ser1742. In spite of the cross-reactivity for binding to vWF, only the two antibodies whose epitopes included residues in the Arg-Gly-Asp sequence inhibited vWF interaction with GP IIb-IIIa. The third antibody had no inhibitory effect even though it was bound to an epitope located at a distance of only few residues on the amino terminal side of Arg-Gly-Asp. These results demonstrate that monoclonal antibodies raised against a single synthetic peptide with sequence limited to fifteen residues may exhibit distinct epitope specificity and may be used to define functional domains in macromolecules with a high degree of resolution.

Keywords

Synthetic Peptide Platelet Adhesion Single Amino Acid Substitution Monoclonal Immunoglobulin Distinct Epitope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. L. Bittle, R. A. Houghten, A. Hannah, T. M. Shinnick, J. G. Sutcliffe, R. A. Lerner, D. J. Rowlands, and F. Brown, Nature, 298:30–33 (1982).PubMedCrossRefGoogle Scholar
  2. 2.
    H. M. Geysen, S. J. Barteling, and R. H. Meloen, Proc. Natl. Acad. Sci. USA, 82:178–182 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    J. Bouhnik, F. X. Galen, J. Menard, P. Corvol, R. Seyer, J. A. Fehrentz, D. L. Nguyen, P. Fulcrand, and B. Castro, J. Biol. Chem., 262:2913–2918 (1987).PubMedGoogle Scholar
  4. 4.
    H. M. Geysen, R. H. Meloen, and S. J. Barteling, Proc. Natl. Acad. Sci. USA, 81:3998–4002 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    R. A. Houghten, Proc. Natl. Acad. Sci. USA, 82:5131–5135 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    J.-M. Bidart, F. Troalen, C. J. Bohuon, G. Hennen, and D. H. Bellet, J. Biol. Chem., 262:15483–15489 (1987).PubMedGoogle Scholar
  7. 7.
    S. H. Socher, M. W. Riemen, D. Martinez, A. Friedman, J. Tai, J. C. Quintero, V. Garsky, and A. Oliff, Proc. Natl. Acad. Sci. USA, 84:8829–8833 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    F. Troalen, D. H. Bellet, P. Ghillani, A. Puisieux, C. J. Bohuon, and J.-M. Bidart, J. Biol. Chem., 263:10370–10376 (1988).PubMedGoogle Scholar
  9. 9.
    G. Noe, J. Hofsteenge, G. Rovelli, and S. R. Stone, J. Bio. Chem., 263:11729–11735 (1988).Google Scholar
  10. 10.
    R. S. Hodges, R. J. Heaton, J. M. Robert Parker, L. Molday, and R. S. Molday, J. Biol. Chem., 263:11768–11775 (1988).PubMedGoogle Scholar
  11. 11.
    J. C. Vera, C. I. Rivas, and R. B. Maccioni, Proc. Natl. Acad. Sci. USA, 85:6763–6767 (1988).PubMedCrossRefGoogle Scholar
  12. 12.
    L. K. Curtiss, and R. S. Smith, J. Biol. Chem., 263:13779–13785 (1988).PubMedGoogle Scholar
  13. 13.
    S. Bishayee, S. Majumdar, C. D. Scher, and S. Khan, Molec. Cell Biol., 8:3696–3702 (1988).PubMedGoogle Scholar
  14. 14.
    B. H. Devens, G. Semenuk, and D. R. Webb, J. Immunol., 141:3148–3155 (1988).PubMedGoogle Scholar
  15. 15.
    P. Ghillani, P. Motte, C. Bohuon, and D. Bellet, J. Immunol., 141:3156–3163 (1988).PubMedGoogle Scholar
  16. 16.
    S. Berliner, K. Niiya, J. R. Roberts, R. A. Houghten, and Z. M. Ruggeri, J. Biol. Chem., 263:7500–7505 (1988).PubMedGoogle Scholar
  17. 17.
    R. O. Hynes, Cell, 48:549–554 (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    E. Rusolahti and M. D. Pierschbacher, Science, 238:491–497 (1987).CrossRefGoogle Scholar
  19. 19.
    Z. M. Ruggeri, R. Bader, and L. De Marco, Proc. Natl. Acad. Sci. USA, 79:6038–6041 (1982).PubMedCrossRefGoogle Scholar
  20. 20.
    Z. M. Ruggeri, L. De Marco, L. Gatti, R. Bader, and R. R. Montgomery, J. Clin. Invest., 72:1–12 (1983).PubMedCrossRefGoogle Scholar
  21. 21.
    R. L. Nachman and L. L. K. Leung, J. Clin. Invest.,69:263–269 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    J. S. Bennett, G. Vilaire, and D. B. Cines, J. Biol. Chem., 257:8049–8064 (1982).PubMedGoogle Scholar
  23. 23.
    G. O. Gogstad, F. Brosstad, M.-B. Krutnes, I. Hagen, and N. O. Solum, Blood, 60:663–671 (1982).PubMedGoogle Scholar
  24. 24.
    E. F. Plow, R. P. McEver, B. S. Coller, V. L. Woods, G. A. Jr. Marguerie, and M. H. Ginsberg, Blood, 66:724–727 (1985).PubMedGoogle Scholar
  25. 25.
    P. Thiagarajan, K. L. Kelly, J. Biol. Chem., 263:3035–3038 (1988).PubMedGoogle Scholar
  26. 26.
    K. Titani, S. Kumar, K. Takio, L. H. Ericsson, R. D. Wade, K. Ashida, K. A. Walsh, M. W. Chopek, J. E. Sadler, and K. Fujikawa, Biochemistry, 25:3171–3184 (1986).PubMedCrossRefGoogle Scholar
  27. 27.
    F. T. Liu, J. W. Bohn, E. L. Terry, H. Yamamoto, C. A. Molinaro, L. A. Sherman, N. R. Klinman, and D. H. Katz, J. Immunol., 124:2728–2737 (1980).PubMedGoogle Scholar
  28. 28.
    J. R. Clamp, K. W. Hughes, and J. C. McPherson, Immunochemistry, 8:871–879 (1971).CrossRefGoogle Scholar
  29. 29.
    H. A. Coller and B. S. Coller, Hybridoma, 2:91–96 (1983).PubMedCrossRefGoogle Scholar
  30. 30.
    P. L. Ey, S. J. Prowse, and C. R. Jenkin, Immunochemistry, 15:429–436 (1978).PubMedCrossRefGoogle Scholar
  31. 31.
    C. Bruck, D. Portetelle, C. Glineur, and A. Bollen, J. Immunol. Methods, 53:313–319 (1982).PubMedCrossRefGoogle Scholar
  32. 32.
    D. J. Fraker and J. C. Speck, Biochem. Biophys. Res. Commun., 80:849–857 (1978).PubMedCrossRefGoogle Scholar
  33. 33.
    A. G. Amit, R. A. Mariuzza, and R. J. Poljac, Science, 233:747–753 (1986).PubMedCrossRefGoogle Scholar
  34. 34.
    D. J. Barlow, M. S. Edwards, and J. M. Thornton, Nature 322:747–748 (1985).CrossRefGoogle Scholar
  35. 35.
    P. J. Munson and D. Rodbard, Anal. Biochem., 107:220–239 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Shlomo A. Berliner
    • 1
    • 2
    • 3
    • 4
  • Richard A. Houghten
    • 1
    • 2
    • 3
    • 4
  • James R. Roberts
    • 1
    • 2
    • 3
    • 4
  • Zaverio M. Ruggeri
    • 5
  1. 1.Division of Experimental Hemostasis ThrombosisResearch Institute of Scripps ClinicLa JollaUSA
  2. 2.Roon Research Center for Arteriosclerosis and ThrombosisResearch Institute of Scripps ClinicLa JollaUSA
  3. 3.Department of Molecular and Experimental Medicine Committee on Vascular BiologyResearch Institute of Scripps ClinicLa JollaUSA
  4. 4.Department of Molecular BiologyResearch Institute of Scripps ClinicLa JollaUSA
  5. 5.Scripps Clinic and Research FoundationLa JollaUSA

Personalised recommendations