Skip to main content

Interactions between the Contact System, Neutrophils and Fibrinogen

  • Chapter
Fibrinogen, Thrombosis, Coagulation, and Fibrinolysis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 281))

Summary

Since plasma kallikrein activates human neutrophils, and in plasma prekallikrein (PK) circulates complexed with high molecular weight kininogen (HK), we determined whether HK could mediate kallikrein’s association with neutrophils. Human neutrophils were found to possess surface-membrane binding sites for HK but no internalization was detected at 37°C. 125I-HK binding to neutrophils was dependent upon Zn++, specific, saturable and reversible with a Kd of 9–18 nM and 40,000–70,000 sites per cell. Furthermore, HK found in neutrophils (240 ng/107 neutrophils) also served as a cofactor for HNE secretion since neutrophils deficient in HK have reduced HNE secretion when stimulated in plasma deficient in HK or with purified kallikrein. Thus, neutrophil surface HK may serve as a receptor for kallikrein. Fibrinogen inhibited 125I-fibrinogen bound specifically and reversibly to human neutrophils. Zn++ (50 µM) was required for binding of 125I-fibrinogen to neutrophils and the addition of Ca++ (2 mM) increased the binding 2-fold. Excess HK completely inhibited binding of and displaced labeled fibringogen as well as unlabeled fibrinogen. Binding of125I-fibrinogen was saturable with an apparent Kd of 170 nM and 140,000 sites/neutrophil. The binding of 125I-fibrinogen to neutrophils was not inhibited by the peptide RGDS derived from the α-chain of fibrinogen, nor by the monoclonal antibodies (MAB) 10E5 to the platelet glycoprotein IIb/IIIa heterodimer. Fibrinogen binding was inhibited by a γ-chain peptide CYGHHLGGAKQAGDV and by MAB OKM1 but was not inhibited by OKM10, a MAB to a different domain of the adhesion glycoprotein Mac-1 (CR3). HK binding to neutrophils was not inhibited by OKM1. These observations were consistent with a further finding that fibrinogen is a noncompetitive inhibitor of 1251-HK binding to neutrophils. These studies indicate that fibrinogen specifically binds to an integrin receptor (Mac-1) on the neutrophil surface through the carboxy terminal of the γ-chain and that HK inhibits this interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

HK:

high molecular weight kininogen

HNE:

human neutrophil elastase

FNDP:

fibronectin degradation products

MAB:

monoclonal antibody

GP:

glycoprotein

CR3 :

complement receptor type 3

PK:

prekallikrein

ELISA:

enzyme-linked immunosorbent assay

References

  1. M. Silverberg, J. E. Nicoll, and A. P. Kaplan. The mechanism by which the light chain of cleaved HMW-kininogen augments the activation of prekallikrein, factor XI and Hageman factor. Thromb. Res. 20:173–189, (1980).

    Article  PubMed  CAS  Google Scholar 

  2. R. E. Thompson, Jr. R. Mandle, and A. P. Kaplan. Studies of binding of prekallikrein and factor XI to high molecular weight kininogen and its light chain. Proc. Natl. Acad. Sci. USA 76:4862–4866, (1979).

    Article  PubMed  CAS  Google Scholar 

  3. A. P. Kaplan, A. B. Kay, and K. F. Austen. A prealbumin activator of prekallikrein. III. Appearance of chemotactic activity for human neutrophils. J. Exp. Med. 135:81–97, (1972).

    Article  PubMed  CAS  Google Scholar 

  4. M. Schapira, E. Despland, C. F. Scott, L. A. Boxer, and R. W. Colman. Purified human plasma kallikrein aggregates human blood neutrophils. J. Clin Invest. 69:1199–1201, (1972).

    Article  Google Scholar 

  5. Y. T. Wachtfogel, U. Kucich, H. L. James, C. F. Scott, M. Schapira, M. Zimmerman, A. B. Cohen, and R. W. Colman. Human plasma kallikrein releases neutrophil elastase during blood coagulation. J. Clin. Invest. 72:1672–1677, (1983).

    Article  PubMed  CAS  Google Scholar 

  6. L. Vroman, A. L Adams, G. C. Fischer, and P. C. Munoz. Interaction of high molecular weight kininogen, factor XII and fibrinogen in plasma at interfaces. Blood 55:156–159, (1980).

    PubMed  CAS  Google Scholar 

  7. A. H. Schmaier, L. Silver, A. L. Adams, G. C. Fischer, P. C. Mounoz, L. Vroman, and R. W. Colman. The effect of high molecular weight kininogen on surface-adsorbed fibrinogen. Thromb. Res. 33:51–67, (1984).

    Article  PubMed  CAS  Google Scholar 

  8. A. H. Schmaier, A. Zuckerberg, C. Silverman, J. Kuchibhotla, G. P. Tuszynski, and R. W. Colman High molecular weight kininogen. A secreted platelet protein. J. Clin. Invest. 71:1477–1489, (1983).

    Article  PubMed  CAS  Google Scholar 

  9. D. M. Kerbiriou-Nabias, F. O. Garcia, and M.-J. Larrieu. Radioimmunoassays of human high and low molecular weight kininogens in plasma and platelets. Brit. J. Haem. 56:273–286, (1984).

    Article  CAS  Google Scholar 

  10. P. J. Fraker and Jr. S. C. Speck. Protein and cell membrane iodinations with a sparingly soluble chloroamide 1,3,4,6-tetrachloro-3 alpha, 6 alpha-diphenylglycoluril. Biochem. Biophys. Res. Commun. 80:849–857, (1978).

    Article  PubMed  CAS  Google Scholar 

  11. E. J. Gustafson, D. Schutsky, L. C. Knight, and A. H. Schmaier. High molecular weight kininogen binds to unstimulated platelets. J. Clin. Invest. 78:310–318, (1986).

    Article  PubMed  CAS  Google Scholar 

  12. R. J. Baugh and J. Travis. Human leukocyte granule elastase: rapid isolation and characterization. Biochemistry 15:836–841, (1976).

    Article  PubMed  CAS  Google Scholar 

  13. B. S. Coller, E. I. Peerschke, L. E. Scudder, and C. A. Sullivan. A murine monoclonal antibody that completely blocks the binding of fibrinogen to platelets produces a thrombasthenic-like state in normal platelets and binds to glycoproteins IIb and/or IIIa. J. Clin. Invest. 72:325–338, (1983).

    Article  PubMed  CAS  Google Scholar 

  14. R. F. Todd III, J. A. Roach, and M. A. Arnaout. The modulated expression of M05, a human myelomonocytic plasma membrane antigen. Blood 65:964–973, (1985).

    PubMed  Google Scholar 

  15. R. W. Colman, A. Bagdasarian, R. C. Talamo, C. F. Scott, M. Sevy, J. A. Guimares, J. V. Pierce, and A. P. Kaplan. Williams trait. Human kininogen deficiency with diminished levels of plasminogen proactivator and prekallikrein associated with abnormalities of the Hageman-dependent pathways. J. Clin. Invest. 56:1650–1662, (1975).

    Article  PubMed  CAS  Google Scholar 

  16. M. J. Castillo, K. Nakajima, M. Zimmerman, and J. C. Powers. Sensitive substrates for human leukocyte and porcine pancreatic elastase. A study of the merits of various chromophoric and fluorogenic leaving groups in assays for serine proteases. Anal. Biochem. 99:53–64, (1979).

    Article  PubMed  CAS  Google Scholar 

  17. Y. T. Wachtfogel, R. A. Pixley, U. Kucich, W. Abrams, G. Weinbaum, M. Schapira, and R. W. Colman. Purified plasma factor XIIa aggregates human neutrophils and causes degranulation. Blood 67:1731–1737, (1986).

    PubMed  CAS  Google Scholar 

  18. R. Mueller. Determination of affinity and specificity of anti-Hapten antibodies by competitive radioimmunoassay. Methods Enzymol. 92:589–601, (1983).

    Article  CAS  Google Scholar 

  19. A. J. Schmaier, D. Schutsky, A. Farber, L. D. Silver, H. N. Bradford, and R. W. Colman Determination of the bifunctional properties of high molecular weight kininogen by studies with monoclonal antibodies directed to each of its chains. J. Biol. Chem., 262:1405–1411, (1987).

    PubMed  CAS  Google Scholar 

  20. P. F. Canellas and A. E. Karu. Statistical package for analysis of competitive ELISA results. J. Immunol. Methods 47:375–385, (1981).

    Article  PubMed  CAS  Google Scholar 

  21. P. J. Munson and D. Rodbard. LIGAND: A versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 107:220–239, (1980).

    Article  PubMed  CAS  Google Scholar 

  22. L. F. Brass and S. J. Shattil. Changes in surface-bound and exchangable calcium during platelet activation. J. Biol. Chem. 257:14000–14005, (1982).

    PubMed  CAS  Google Scholar 

  23. R. Pytela, M. D. Pierschbacher, M. H. Ginsberg, E. F. Plow, and E. Ruoslahti. Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp-Aspspecific adhesion receptors. Science 231:1559–1562, (1986).

    Article  PubMed  CAS  Google Scholar 

  24. M. Kloczewiak, S. Timmons, T. J. Lukas, and J. Hawiger. Platelet receptor recognition site of human fibrinogen synthesis and structure-function relationship of peptides corresponding to the carboxyterminal segment of gamma chain. Biochemistry 23:1767–1774, (1984).

    Article  PubMed  CAS  Google Scholar 

  25. R. M. Senior, W. F. Skogen, G. L. Griffin, and G. D. Wilner. Effects of fibrinogen derivatives upon the inflammatory response. J. Clin. Invest. 77:1014–1019, (1986).

    Article  PubMed  CAS  Google Scholar 

  26. I. Hayashi, H. Kato, S. Iwanaga, and S. Oh-ishi. Rat plasma high molecular weight kininogen. J. Biol. Chem. 260:6115–6123, (1985).

    PubMed  CAS  Google Scholar 

  27. T. Shimada, H. Kato, and S. Iwanaga. Effect of metal ions on the surface mediated activation of factor XII and prekallikrein. In: Kinins ‘84. L. Greenberg, ed. Conference at Savannah, GA (abstract), (1984).

    Google Scholar 

  28. C. F. Scott, L. D. Silver, M. Schapiro, and R. W. Colman. Cleavage of human high molecular weight kininogen markedly enhances its coagulant activity. Evidence that this molecule exists as a procofactor. J. Clin. Invest. 73:954–962, (1984).

    Article  PubMed  CAS  Google Scholar 

  29. Jr. R. Mandle, R. W. Colman, and A. P. Kaplan. Identification of prekallikrein and high molecular weight kininogen as a complex in human plasma. Proc. Natl. Acad. Sci. USA 73:4179–4183, (1976).

    Article  PubMed  CAS  Google Scholar 

  30. R. W. Colman, Y. Wachtfogel, U. Kucich, G. Weinbaum, S. Hahn, R. A. Pixley, C. F. Scott, de A. Agostini, D. Burger, and M. Schapira. Effect of cleavage of the heavy chain of human plasma kallikrein on its functional properties. Blood 65:311–318, (1985).

    PubMed  CAS  Google Scholar 

  31. F. Van der Graaf, G. Tans, B. N. Bouma, and J. H. Griffin. Isolation and functional properties of the heavy and light chains of human plasma kallikrein. J. Biol. Chem. 257:14300–14305, (1982).

    PubMed  Google Scholar 

  32. G. A. Marguerie, E. F. Plow, and T. S. Edgington. Human platelets possess an inducible and saturable receptor specific for fibrinogen. J. Biol. Chem. 254:5357–5363, (1979).

    PubMed  CAS  Google Scholar 

  33. J. N. Lindon, G. McManama, L. Kushner, E. W. Merrill, and E. W. Salzman. Does the confirmation of adsorbed fibrinogen dictate platelet interactions with artificial surfaces? Blood 68:355–362, (1986).

    PubMed  CAS  Google Scholar 

  34. M. F. Scully and V. V. Kakkar. Structural features of fibrinogen associated with binding to chelated c zinc. Biochem. Biophys. Acta 700:130–133, (1982).

    Article  PubMed  CAS  Google Scholar 

  35. C. R. Zobel. The platelet cytoskeleton: evidence for its structure from interactions with ZnC12. J. Submicrosc. Cytol. Pathol. 20:268–275, (1988).

    Google Scholar 

  36. E. Ruoslahti and M. D. Pierschbacher. New perspectives in cell adhesion: RGD and integrins. Science 238:491–497, (1987).

    Article  PubMed  CAS  Google Scholar 

  37. R. W. Watt, B. A. Cottrell, D. D. Strong, and R. F. Doolittle Amino acid sequence studies on the a chain of human fibrinogen. Overlapping sequences providing the complete sequence. Biochemistry 18:5410–5422, (1979).

    Article  PubMed  CAS  Google Scholar 

  38. T. K. Gartner and J. S. Bennett. The tetrapeptide analogue of the cell attachment site of fibronectin inhibits platelet agga and fibrinogen binding to activated platelet. J. Biol. Chem. 260:11891–11896, (1985).

    PubMed  CAS  Google Scholar 

  39. Y. T. Wachtfogel, W. Abrams, U. Kucich, G. Weinbaum, M. Schapira, and R. W. Colman. Fibronectin degradation products containing the cytoadhesive tetrapeptide stimulate human neutrophil degranulation. J. Clin. Invest. 81:1310–1316, (1988).

    Article  PubMed  CAS  Google Scholar 

  40. J. I. Weitz, S. L. Landman, K. A. Crowly, S. Birken, and F. J. Morgan. Development of an assay for in vivo human neutrophil elastase activity. J. Clin. Invest. 78:155–162, (1986).

    Article  PubMed  CAS  Google Scholar 

  41. N. Dana, B. Styrt, J. Griffin, R. F. Todd III, M. Klempher, and M. A. Arnaout. Two functional domains in the phagocyte membrane. Glycoprotein MoI identified by monoclonal antibodies. J. Immunology 137:3259–3263, (1986).

    CAS  Google Scholar 

  42. M. A. Arnaout, N. Dana, J. Pitt, and R. F. Todd III. Deficiency of two human leukocyte surface membrane glycoproteins (MoI and LFA-1). Fed. Proc. 44:2664–2670, (1985).

    PubMed  CAS  Google Scholar 

  43. D. C. Altieri, T. Edgington, and P. M. Mannucci. Oligospecificity of cellular adhesion receptor Mac-1 encompasses an inducable recognition specificity for fibrinogen. J. Cell Biol. 107:1893–1900, (1988).

    Article  PubMed  CAS  Google Scholar 

  44. D. C. Altieri, R. Bader, and P. M. Mannucci. Structural diversity among cellular adhesion receptors: fibrinogen binding is a novel biological property of the monocyte differentiation antigen OKM1. Thromb. Hemost. 58:1052, (1987).

    Google Scholar 

  45. R. O. Hynes. Integrins: A family of cell surface receptors. Cell 48:549–554, (1987).

    Article  PubMed  CAS  Google Scholar 

  46. E. F. Plow, J. C. Loftus, E. G. Levin, D. S. Lou, D. Dixon, J. Forsyth, and M. H. Ginsberg. Immunologic relationship between platelet membrane glycoprotein llb/IIIa and cell surface molecules expressed by a variety of cells. Proc. Natl. Acad. Sci. USA 83:6002–6006, (1986).

    Article  PubMed  CAS  Google Scholar 

  47. F. Sanchez-Madrid, J. A. Nagy, E. Robbins, P. Simm, and T. A. Springer. A human leukocyte differentiation antigen family with distinct alpha subunits and a common beta subunit: the lymphocyte-function associated antigen (LFA-1), the C3bi complement receptor (OKM1/Mac-1), and the p150,95 molecule. J. Exp. Med. 158:1785–1803, (1983).

    Article  PubMed  CAS  Google Scholar 

  48. T. A. Springer, L. J. Miller, and D. C. Anderson. p150,95,the third member of the Mac-1, LFA-1 human leukocyte adhesion glycoprotein family. J. Immunol. 136: 240, (1986).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Colman, R.W. (1990). Interactions between the Contact System, Neutrophils and Fibrinogen. In: Liu, C.Y., Chien, S. (eds) Fibrinogen, Thrombosis, Coagulation, and Fibrinolysis. Advances in Experimental Medicine and Biology, vol 281. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3806-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3806-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6697-3

  • Online ISBN: 978-1-4615-3806-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics