Interactions between the Contact System, Neutrophils and Fibrinogen

  • Robert W. Colman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 281)


Since plasma kallikrein activates human neutrophils, and in plasma prekallikrein (PK) circulates complexed with high molecular weight kininogen (HK), we determined whether HK could mediate kallikrein’s association with neutrophils. Human neutrophils were found to possess surface-membrane binding sites for HK but no internalization was detected at 37°C. 125I-HK binding to neutrophils was dependent upon Zn++, specific, saturable and reversible with a Kd of 9–18 nM and 40,000–70,000 sites per cell. Furthermore, HK found in neutrophils (240 ng/107 neutrophils) also served as a cofactor for HNE secretion since neutrophils deficient in HK have reduced HNE secretion when stimulated in plasma deficient in HK or with purified kallikrein. Thus, neutrophil surface HK may serve as a receptor for kallikrein. Fibrinogen inhibited 125I-fibrinogen bound specifically and reversibly to human neutrophils. Zn++ (50 µM) was required for binding of 125I-fibrinogen to neutrophils and the addition of Ca++ (2 mM) increased the binding 2-fold. Excess HK completely inhibited binding of and displaced labeled fibringogen as well as unlabeled fibrinogen. Binding of125I-fibrinogen was saturable with an apparent Kd of 170 nM and 140,000 sites/neutrophil. The binding of 125I-fibrinogen to neutrophils was not inhibited by the peptide RGDS derived from the α-chain of fibrinogen, nor by the monoclonal antibodies (MAB) 10E5 to the platelet glycoprotein IIb/IIIa heterodimer. Fibrinogen binding was inhibited by a γ-chain peptide CYGHHLGGAKQAGDV and by MAB OKM1 but was not inhibited by OKM10, a MAB to a different domain of the adhesion glycoprotein Mac-1 (CR3). HK binding to neutrophils was not inhibited by OKM1. These observations were consistent with a further finding that fibrinogen is a noncompetitive inhibitor of 1251-HK binding to neutrophils. These studies indicate that fibrinogen specifically binds to an integrin receptor (Mac-1) on the neutrophil surface through the carboxy terminal of the γ-chain and that HK inhibits this interaction.


Human Neutrophil Total Binding Human Neutrophil Elastase Complement Receptor Type Plasma Kallikrein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviated Heading


high molecular weight kininogen


human neutrophil elastase


fibronectin degradation products


monoclonal antibody




complement receptor type 3




enzyme-linked immunosorbent assay


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Silverberg, J. E. Nicoll, and A. P. Kaplan. The mechanism by which the light chain of cleaved HMW-kininogen augments the activation of prekallikrein, factor XI and Hageman factor. Thromb. Res. 20:173–189, (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    R. E. Thompson, Jr. R. Mandle, and A. P. Kaplan. Studies of binding of prekallikrein and factor XI to high molecular weight kininogen and its light chain. Proc. Natl. Acad. Sci. USA 76:4862–4866, (1979).PubMedCrossRefGoogle Scholar
  3. 3.
    A. P. Kaplan, A. B. Kay, and K. F. Austen. A prealbumin activator of prekallikrein. III. Appearance of chemotactic activity for human neutrophils. J. Exp. Med. 135:81–97, (1972).PubMedCrossRefGoogle Scholar
  4. 4.
    M. Schapira, E. Despland, C. F. Scott, L. A. Boxer, and R. W. Colman. Purified human plasma kallikrein aggregates human blood neutrophils. J. Clin Invest. 69:1199–1201, (1972).CrossRefGoogle Scholar
  5. 5.
    Y. T. Wachtfogel, U. Kucich, H. L. James, C. F. Scott, M. Schapira, M. Zimmerman, A. B. Cohen, and R. W. Colman. Human plasma kallikrein releases neutrophil elastase during blood coagulation. J. Clin. Invest. 72:1672–1677, (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    L. Vroman, A. L Adams, G. C. Fischer, and P. C. Munoz. Interaction of high molecular weight kininogen, factor XII and fibrinogen in plasma at interfaces. Blood 55:156–159, (1980).PubMedGoogle Scholar
  7. 7.
    A. H. Schmaier, L. Silver, A. L. Adams, G. C. Fischer, P. C. Mounoz, L. Vroman, and R. W. Colman. The effect of high molecular weight kininogen on surface-adsorbed fibrinogen. Thromb. Res. 33:51–67, (1984).PubMedCrossRefGoogle Scholar
  8. 8.
    A. H. Schmaier, A. Zuckerberg, C. Silverman, J. Kuchibhotla, G. P. Tuszynski, and R. W. Colman High molecular weight kininogen. A secreted platelet protein. J. Clin. Invest. 71:1477–1489, (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    D. M. Kerbiriou-Nabias, F. O. Garcia, and M.-J. Larrieu. Radioimmunoassays of human high and low molecular weight kininogens in plasma and platelets. Brit. J. Haem. 56:273–286, (1984).CrossRefGoogle Scholar
  10. 10.
    P. J. Fraker and Jr. S. C. Speck. Protein and cell membrane iodinations with a sparingly soluble chloroamide 1,3,4,6-tetrachloro-3 alpha, 6 alpha-diphenylglycoluril. Biochem. Biophys. Res. Commun. 80:849–857, (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    E. J. Gustafson, D. Schutsky, L. C. Knight, and A. H. Schmaier. High molecular weight kininogen binds to unstimulated platelets. J. Clin. Invest. 78:310–318, (1986).PubMedCrossRefGoogle Scholar
  12. 12.
    R. J. Baugh and J. Travis. Human leukocyte granule elastase: rapid isolation and characterization. Biochemistry 15:836–841, (1976).PubMedCrossRefGoogle Scholar
  13. 13.
    B. S. Coller, E. I. Peerschke, L. E. Scudder, and C. A. Sullivan. A murine monoclonal antibody that completely blocks the binding of fibrinogen to platelets produces a thrombasthenic-like state in normal platelets and binds to glycoproteins IIb and/or IIIa. J. Clin. Invest. 72:325–338, (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    R. F. Todd III, J. A. Roach, and M. A. Arnaout. The modulated expression of M05, a human myelomonocytic plasma membrane antigen. Blood 65:964–973, (1985).PubMedGoogle Scholar
  15. 15.
    R. W. Colman, A. Bagdasarian, R. C. Talamo, C. F. Scott, M. Sevy, J. A. Guimares, J. V. Pierce, and A. P. Kaplan. Williams trait. Human kininogen deficiency with diminished levels of plasminogen proactivator and prekallikrein associated with abnormalities of the Hageman-dependent pathways. J. Clin. Invest. 56:1650–1662, (1975).PubMedCrossRefGoogle Scholar
  16. 16.
    M. J. Castillo, K. Nakajima, M. Zimmerman, and J. C. Powers. Sensitive substrates for human leukocyte and porcine pancreatic elastase. A study of the merits of various chromophoric and fluorogenic leaving groups in assays for serine proteases. Anal. Biochem. 99:53–64, (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    Y. T. Wachtfogel, R. A. Pixley, U. Kucich, W. Abrams, G. Weinbaum, M. Schapira, and R. W. Colman. Purified plasma factor XIIa aggregates human neutrophils and causes degranulation. Blood 67:1731–1737, (1986).PubMedGoogle Scholar
  18. 18.
    R. Mueller. Determination of affinity and specificity of anti-Hapten antibodies by competitive radioimmunoassay. Methods Enzymol. 92:589–601, (1983).CrossRefGoogle Scholar
  19. 19.
    A. J. Schmaier, D. Schutsky, A. Farber, L. D. Silver, H. N. Bradford, and R. W. Colman Determination of the bifunctional properties of high molecular weight kininogen by studies with monoclonal antibodies directed to each of its chains. J. Biol. Chem., 262:1405–1411, (1987).PubMedGoogle Scholar
  20. 20.
    P. F. Canellas and A. E. Karu. Statistical package for analysis of competitive ELISA results. J. Immunol. Methods 47:375–385, (1981).PubMedCrossRefGoogle Scholar
  21. 21.
    P. J. Munson and D. Rodbard. LIGAND: A versatile computerized approach for characterization of ligand-binding systems. Anal. Biochem. 107:220–239, (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    L. F. Brass and S. J. Shattil. Changes in surface-bound and exchangable calcium during platelet activation. J. Biol. Chem. 257:14000–14005, (1982).PubMedGoogle Scholar
  23. 23.
    R. Pytela, M. D. Pierschbacher, M. H. Ginsberg, E. F. Plow, and E. Ruoslahti. Platelet membrane glycoprotein IIb/IIIa: member of a family of Arg-Gly-Asp-Aspspecific adhesion receptors. Science 231:1559–1562, (1986).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Kloczewiak, S. Timmons, T. J. Lukas, and J. Hawiger. Platelet receptor recognition site of human fibrinogen synthesis and structure-function relationship of peptides corresponding to the carboxyterminal segment of gamma chain. Biochemistry 23:1767–1774, (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    R. M. Senior, W. F. Skogen, G. L. Griffin, and G. D. Wilner. Effects of fibrinogen derivatives upon the inflammatory response. J. Clin. Invest. 77:1014–1019, (1986).PubMedCrossRefGoogle Scholar
  26. 26.
    I. Hayashi, H. Kato, S. Iwanaga, and S. Oh-ishi. Rat plasma high molecular weight kininogen. J. Biol. Chem. 260:6115–6123, (1985).PubMedGoogle Scholar
  27. 27.
    T. Shimada, H. Kato, and S. Iwanaga. Effect of metal ions on the surface mediated activation of factor XII and prekallikrein. In: Kinins ‘84. L. Greenberg, ed. Conference at Savannah, GA (abstract), (1984).Google Scholar
  28. 28.
    C. F. Scott, L. D. Silver, M. Schapiro, and R. W. Colman. Cleavage of human high molecular weight kininogen markedly enhances its coagulant activity. Evidence that this molecule exists as a procofactor. J. Clin. Invest. 73:954–962, (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    Jr. R. Mandle, R. W. Colman, and A. P. Kaplan. Identification of prekallikrein and high molecular weight kininogen as a complex in human plasma. Proc. Natl. Acad. Sci. USA 73:4179–4183, (1976).PubMedCrossRefGoogle Scholar
  30. 30.
    R. W. Colman, Y. Wachtfogel, U. Kucich, G. Weinbaum, S. Hahn, R. A. Pixley, C. F. Scott, de A. Agostini, D. Burger, and M. Schapira. Effect of cleavage of the heavy chain of human plasma kallikrein on its functional properties. Blood 65:311–318, (1985).PubMedGoogle Scholar
  31. 31.
    F. Van der Graaf, G. Tans, B. N. Bouma, and J. H. Griffin. Isolation and functional properties of the heavy and light chains of human plasma kallikrein. J. Biol. Chem. 257:14300–14305, (1982).PubMedGoogle Scholar
  32. 32.
    G. A. Marguerie, E. F. Plow, and T. S. Edgington. Human platelets possess an inducible and saturable receptor specific for fibrinogen. J. Biol. Chem. 254:5357–5363, (1979).PubMedGoogle Scholar
  33. 33.
    J. N. Lindon, G. McManama, L. Kushner, E. W. Merrill, and E. W. Salzman. Does the confirmation of adsorbed fibrinogen dictate platelet interactions with artificial surfaces? Blood 68:355–362, (1986).PubMedGoogle Scholar
  34. 34.
    M. F. Scully and V. V. Kakkar. Structural features of fibrinogen associated with binding to chelated c zinc. Biochem. Biophys. Acta 700:130–133, (1982).PubMedCrossRefGoogle Scholar
  35. 35.
    C. R. Zobel. The platelet cytoskeleton: evidence for its structure from interactions with ZnC12. J. Submicrosc. Cytol. Pathol. 20:268–275, (1988).Google Scholar
  36. 36.
    E. Ruoslahti and M. D. Pierschbacher. New perspectives in cell adhesion: RGD and integrins. Science 238:491–497, (1987).PubMedCrossRefGoogle Scholar
  37. 37.
    R. W. Watt, B. A. Cottrell, D. D. Strong, and R. F. Doolittle Amino acid sequence studies on the a chain of human fibrinogen. Overlapping sequences providing the complete sequence. Biochemistry 18:5410–5422, (1979).PubMedCrossRefGoogle Scholar
  38. 38.
    T. K. Gartner and J. S. Bennett. The tetrapeptide analogue of the cell attachment site of fibronectin inhibits platelet agga and fibrinogen binding to activated platelet. J. Biol. Chem. 260:11891–11896, (1985).PubMedGoogle Scholar
  39. 39.
    Y. T. Wachtfogel, W. Abrams, U. Kucich, G. Weinbaum, M. Schapira, and R. W. Colman. Fibronectin degradation products containing the cytoadhesive tetrapeptide stimulate human neutrophil degranulation. J. Clin. Invest. 81:1310–1316, (1988).PubMedCrossRefGoogle Scholar
  40. 40.
    J. I. Weitz, S. L. Landman, K. A. Crowly, S. Birken, and F. J. Morgan. Development of an assay for in vivo human neutrophil elastase activity. J. Clin. Invest. 78:155–162, (1986).PubMedCrossRefGoogle Scholar
  41. 41.
    N. Dana, B. Styrt, J. Griffin, R. F. Todd III, M. Klempher, and M. A. Arnaout. Two functional domains in the phagocyte membrane. Glycoprotein MoI identified by monoclonal antibodies. J. Immunology 137:3259–3263, (1986).Google Scholar
  42. 42.
    M. A. Arnaout, N. Dana, J. Pitt, and R. F. Todd III. Deficiency of two human leukocyte surface membrane glycoproteins (MoI and LFA-1). Fed. Proc. 44:2664–2670, (1985).PubMedGoogle Scholar
  43. 44.
    D. C. Altieri, T. Edgington, and P. M. Mannucci. Oligospecificity of cellular adhesion receptor Mac-1 encompasses an inducable recognition specificity for fibrinogen. J. Cell Biol. 107:1893–1900, (1988).PubMedCrossRefGoogle Scholar
  44. 45.
    D. C. Altieri, R. Bader, and P. M. Mannucci. Structural diversity among cellular adhesion receptors: fibrinogen binding is a novel biological property of the monocyte differentiation antigen OKM1. Thromb. Hemost. 58:1052, (1987).Google Scholar
  45. 46.
    R. O. Hynes. Integrins: A family of cell surface receptors. Cell 48:549–554, (1987).PubMedCrossRefGoogle Scholar
  46. 47.
    E. F. Plow, J. C. Loftus, E. G. Levin, D. S. Lou, D. Dixon, J. Forsyth, and M. H. Ginsberg. Immunologic relationship between platelet membrane glycoprotein llb/IIIa and cell surface molecules expressed by a variety of cells. Proc. Natl. Acad. Sci. USA 83:6002–6006, (1986).PubMedCrossRefGoogle Scholar
  47. 48.
    F. Sanchez-Madrid, J. A. Nagy, E. Robbins, P. Simm, and T. A. Springer. A human leukocyte differentiation antigen family with distinct alpha subunits and a common beta subunit: the lymphocyte-function associated antigen (LFA-1), the C3bi complement receptor (OKM1/Mac-1), and the p150,95 molecule. J. Exp. Med. 158:1785–1803, (1983).PubMedCrossRefGoogle Scholar
  48. 49.
    T. A. Springer, L. J. Miller, and D. C. Anderson. p150,95,the third member of the Mac-1, LFA-1 human leukocyte adhesion glycoprotein family. J. Immunol. 136: 240, (1986).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Robert W. Colman
    • 1
  1. 1.Thrombosis Research CenterTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations