Advertisement

Native Fibrin Gel Networks and Factors Influencing their Formation in Health and Disease

  • B. Blombäck
  • D. Banerjee
  • K. Carlsson
  • A. Hamsten
  • B. Hessel
  • R. Procyk
  • A. Silveira
  • L. Zacharski
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 281)

Summary

Hydrated fibrin gels were studied by confocal laser 3D microscopy, liquid permeation and turbidity. The gels from normal fibrinogen were found to be composed of straight rod-like fiber elements which sometimes originated from denser nodes. In gels formed at increasing thrombin or fibrinogen concentrations, the gel networks became tighter and the porosity decreased. The fiber strands also became shorter. Gel porosity of the network decreased dramatically in gels formed at increasing ionic strengths. Shortening of the fibers were observed and fiber swelling occurred at ionic strength above 0.24.

Albumin and dextran, when present in the gel forming system, affected the formation of more porous structures with strands of larger mass-length ratio and fiber thickness. This type of gels were also formed in plasma. Albumin and lipoproteins may be among the determinants for the formation of this type of gel structure in plasma.

Gels formed when factor XIIIa instead of thrombin was used as catalyst for gelation showed a completely different structure in which lumps of polymeric material were held together by a network of fine fiber strands.

Our studies have also shown that the methodologies employed may be useful in studies of gel structures in certain dysfibrinogenemias as well as in other diseases. We give examples of two patients with abnormal fibrinogen and of patients with ischaemic heart disease.

Keywords

Ionic Strength Factor Xiii Stereo Pair Fibrinogen Concentration Average Fiber Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. Dollittle, Fibrinogen and Fibrin, Ann. Rev. Biochem., 53:195–229 (1984).CrossRefGoogle Scholar
  2. 2.
    B. Blombäck, Fibrinogen to fibrin - An overview, in: “Fibrinogen-Structural Variants and Interactions, A. Henschen, B. Hessel, J. McDonagh and T. Saldeen, eds., Walter de Gruyter and Co., Berlin-New York. (1985).Google Scholar
  3. 3.
    G. R. Crabtree, The molecular biology of fibrinogen, in: “The Molecular Basis of Blood Diseases”, G. Stamatoyannopoulos, A. W. Nienhuis, P. Leder and P. W. Majerus, eds., W.B. Saunders Co., Philadelphia (1987).Google Scholar
  4. 4.
    W. Krakow, G. F. Endres, B. M. Siegel and H. A. Scheraga, An electron microscopic investigation of the polymerization of bovine fibrin monomer, J. Mol. Biol., 71:95–103 (1972).PubMedCrossRefGoogle Scholar
  5. 5.
    R. C. Williams, Morphology of fibrinogen monomers and of fibrin protofibrils, Ann. N.Y. Acad. Sci., 408:180–193 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    J. Hermans, Models of fibrin, Proc. Natl. Acad. Sci. USA, 76:1189–1193 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    J. W. Weisel, Fibrin assembly. Lateral aggregation and the role of the two pairs of fibrinopeptides, Biophys. J., 50:1079–1093 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    J. W. Weisel, C. Nagaswami, and L. Makowski, Twisting of fibrin fibers limits their radial growth, Proc. Natl. Acad. Sci. USA, 84:8991–8995 (1987).PubMedCrossRefGoogle Scholar
  9. 9.
    J. D. Ferry and P. R. Morrison, Preparation and properties of serum and plasma proteins - VIII. The conversion of human fibrinogen to fibrin under various conditions, J. Am. Chem. Soc., 69:388–400 (1947).PubMedCrossRefGoogle Scholar
  10. 10.
    M. E. Carr, Jr., L. L. Shen and J. Hermans, Mass-length ratio of fibrin fibers from gel permeation and light scattering, Biopolymers, 16:1–15 (1977).PubMedCrossRefGoogle Scholar
  11. 11.
    G. A. Shah, C. H. Nair and D. P. Dhall, Physiological studies on fibrin network structure, Thromb. Res., 40:181–188 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    G. A. Shah, C. H. Nair and D. P. Dhall, Comparison of fibrin networks in plasma and fibrinogen solution, Thromb. Res., 45:257–264 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    B. Blombäck and M. Okada, Fibrin gel structure and clotting time, Thromb. Res., 25:51–70 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    W. H. Howell, The clotting of blood as seen with the ultramicroscope, Am. J. Physiol., 35:143–149 (1914).Google Scholar
  15. 15.
    J. M. Buchanan, L. B. Chen, T. Hamazaki, E. Lenk and D. F. Waugh, The early development of fibrin clot structure, in: “Chemistry and Biology of thrombin”, R. L. Lundblad, J. W. Fenton, II and K. G. Mann, eds., Ann Arbor Science Publishers Inc., New York (1977).Google Scholar
  16. 16.
    B. Blombäck, M. Okada, B. Forslind, and U. Larsson, Fibrin gels as biological filters and interfaces, Biorheology, 21:93–104 (1984).PubMedGoogle Scholar
  17. 17.
    C. v. Z. Hawn and K. R. Porter, The fine structure of clots formed from purified bovine fibrinogen and thrombin: A study with the electron microscope, J. Exp. Med., 86:285–292 (1947).CrossRefGoogle Scholar
  18. 18.
    K. R. Porter, and C. v. Z. Hawn, Sequences in the formation of clots from purified bovine fibrinogen and thrombin: A study with the electron microscope, J. Exp. Med., 90:225–232 (1949).PubMedCrossRefGoogle Scholar
  19. 19.
    G. A. Shah, I. A. Ferguson, T. Z. Dhall and D. P. Dhall, Polydispersion in the diameter of fibers in fibrin networks: Consequences on the measurement of mass-length ratio by permeability and turbidity, Biopolymers, 21:1037–1047 (1982).PubMedCrossRefGoogle Scholar
  20. 20.
    M. F. Müller, H. Ris. and J. D. Ferry, Electron microscopy of fine fibrin clots and fine and coarse fibrin films, J. Mol. Biol., 174:369–384 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    M. W. Mosesson, J. P. DiOrio, M. F. Müller, J. R. Shainoff, K. R. Siebenlist, D. L. Amrani, G. A. Homandberg, J. Soria, C. Soria, and M. Samama, Studies on the ultrastructure of fibrin lacking fibrinopeptide B (β-fibrin), Blood, 69:1073–1081 (1987).PubMedGoogle Scholar
  22. 22.
    G. Marguerie, G. Chagniel, and M. Suscillon, The binding of calcium to bovine fibrinogen, Biochim. Biophys. Acta, 490:94–103 (1977).PubMedCrossRefGoogle Scholar
  23. 23.
    B. Blombäck, M. Blombäck, T. C. Laurent and H. Pertoft, Effect of EDTA on fibrinogen, Biochim. Biophys. Acta, 127:560–562 (1966).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Okada and B. Blombäck, Calcium and fibrin gel structure, Thromb. Res., 29:269–280 (1983).PubMedCrossRefGoogle Scholar
  25. 25.
    U. Abildgaard, Acceleration of fibrin polymerization by dextran and ficoll. Interaction with calcium and plasma proteins, Scand. J. Clin. Lab. Invest., 18:518–524 (1966).PubMedCrossRefGoogle Scholar
  26. 26.
    M. Okada, B. Blombäck, and M. Block, Effect of albumin and dextran on fibrin gel structure, Thromb. Haemostas., 50:185 (1983).Google Scholar
  27. 27.
    M. E. Carr, and D. A. Gabriel, The effect of dextran 70 on the structure of plasma-derived fibrin gels, J. Lab. Clin. Med., 96:985–993 (1980).PubMedGoogle Scholar
  28. 28.
    O. Tangen, K. O. Wik, I. A. M. Almquist, K.-E. Arfors and H.C. Hint, Effects of dextran on the structure and plasmin-induced lysis of human fibrin, Thromb. Res., 1:487–492 (1972).CrossRefGoogle Scholar
  29. 29.
    M. E. Carr and D. A. Gabriel, Dextran-induced changes in fibrin fiber size and density based on wavelength dependence of gel turbidity, Macro-molecules, 13:1473–1477 (1980).CrossRefGoogle Scholar
  30. 30.
    C. Southan, Molecular and genetic abnormalities of fibrinogen, in: Fibrinogen, Fibrin Stabilisation and Fibrinolysis J. L. Francis, ed., E. Horwood Ltd., Chichester, England (1988).Google Scholar
  31. 31.
    M. Blombäck, B. Blombäck, E. F. Mammen and A. S. Prasad, Fibrinogen Detroit - A molecular defect in the N-terminal disulphide knot of human fibrinogen? Nature, 218:134–137 (1968).PubMedCrossRefGoogle Scholar
  32. 32.
    F. Ni, Y. Konishi, L. D. Bullock, M. N. Rivetna, and H. A. Scheraga, High-resolution NMR studies of fibrinogen-like peptides in solution: Structural basis for the bleeding disorder caused by a single mutation of Gly(12) to Val(12) in the Aa chain of human fibrinogen Rouen, Biochemistry, 28:3106–3119 (1989).PubMedCrossRefGoogle Scholar
  33. 33.
    C. Y. Liu, J. A. Koehn and F. J. Morgan, Characterization of fibrinogen New York 1, J. Biol. Chem., 260:4390–4396 (1985).PubMedGoogle Scholar
  34. 34.
    N. Carrell, D. A. Gabriel, P. M. Blatt, M. E. Carr, and J. McDonagh, Hereditary dysfibrinogenemia in a patient with thrombotic disease, Blood, 62:439–447 (1983).PubMedGoogle Scholar
  35. 35.
    S. E. Humphries, M. Cook, M. Dubowitz, Y. Stirling and T. W. Meade, Role of genetic variation at the fibrinogen locus in determination of plasma fibrinogen concentrations, The Lancet, 1:1452–1455 (1987).CrossRefGoogle Scholar
  36. 36.
    T. W. Meade, S. Mellows, M. Brozovic, G. J. Miller, R. R. Chakrabarti, W. R. S. North, A. P. Haines, Y. Stirling, J. D. Imeson and S. G. Thompson, Haemostatic function and ischaemic heart disease: Principal results of the Northwick Park heart study, The Lancet, ii:533–537 (1986).CrossRefGoogle Scholar
  37. 37.
    L. Wilhelmsen, K. Svärdsudd, K. Korsan-Bengtsen, B. Larsson, L. Welin and G. Tibblin, Fibrinogen as a risk factor for stroke and myocardial infarction, New Engl. J. Med., 311:501–505 (1984).PubMedCrossRefGoogle Scholar
  38. 38.
    M. C. Stone and and J. M. Thorp, Plasma fibrinogen - A major coronary risk factor, J. Royal College of Gen. Practitioners, 35:565–569 (1985).Google Scholar
  39. 39.
    H. L. Markowe, M. G. Marmot, M. J. Shipley, C. J. Bulpitt, T. W. Meade, Y. Stirling, M. V. Vickers and A. Semmence, Fibrinogen: a possible link between social class and coronary heart disease, Brit. Med. J., 291:1312–1314 (1985).CrossRefGoogle Scholar
  40. 40.
    W. B. Kannel, W. P. Castelli and S. L. Meeks, Fibrinogen and cardiovascular disease, J. Am. Coll. Card., 5:517 (1985).CrossRefGoogle Scholar
  41. 41.
    J. (Brunner) Lorand, T. Urayama and L. Lorand, Transglutaminase as a blood clotting enzyme, Biochem. Biophys. Res. Commun.,23:828–834 (1966).CrossRefGoogle Scholar
  42. 42.
    B. Ly, P. Kierulf and E. Jakobsen, Stabilization of soluble fibrin/fibrinogen complexes by fibrin stabilizing factor (FSF), Thromb. Res., 4:509–522 (1974).PubMedCrossRefGoogle Scholar
  43. 43.
    H. Kanaide and J. R. Shainoff, Cross-linking of fibrinogen and fibrin by fibrin-stabilizing factor (factor XIIIa), J. Lab. Clin. Med.,85:574–597 (1975).PubMedGoogle Scholar
  44. 44.
    B. Blombäck, R. Procyk, L. Adamson and B. Hessel, FXIII induced gelation of human fibrinogen - An alternative thiol enhanced, thrombin independent pathway, Thromb. Res., 37:613–628 (1985).PubMedCrossRefGoogle Scholar
  45. 45.
    R. Procyk and B. Blombäck, Factor XIII-induced crosslinking in solutions of fibrinogen and fibronectin, Biochim. Biophys. Acta, 967:304–313. (1988).PubMedCrossRefGoogle Scholar
  46. 46.
    R. Procyk, L. Adamson, M. Block and B. Blombäck, Factor XIII catalyzed formation of fibrinogen-fibronectin oligomers - A thiol enhanced process, Thromb. Res.,40:833–852 (1985).PubMedCrossRefGoogle Scholar
  47. 47.
    B. Blombäck, K. Carlsson, B. Hessel, A. Liljeborg, R. Procyk and N. Aslund, Native fibrin gel networks observed by 3D microscopy, permeation and turbidity, Biochim. Biophys. Acta, 997:96–110 (1989).PubMedCrossRefGoogle Scholar
  48. 48.
    L. Lorand and T. Gotoh, Fibrinoligase - The fibrin stabilizing factor system, Methods in Enzymology, 19:770–782 (1970).CrossRefGoogle Scholar
  49. 49.
    M. S. Brown, S. E. Dana and J. L. Goldstein, Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured human fibroblasts, J. Biol. Chem., 249:789–796 (1974).PubMedGoogle Scholar
  50. 50.
    R. Signer and H. Egli, Sedimentation von Makromolekülen and Durchströmung von Gelen, Recueil,69:45–58 (1950).CrossRefGoogle Scholar
  51. 51.
    H. A. Scheraga and M. Laskowski, Jr., The fibrinogen-fibrin conversion, Adv. Protein Chem., 12:1–131 (1957).CrossRefGoogle Scholar
  52. 52.
    G. Marguerie and H. B. Stuhrmann, A neutron small-angle scattering study of bovine fibrinogen, J. Mol. Biol.,102:143–156 (1976).PubMedCrossRefGoogle Scholar
  53. 53.
    K. Carlsson and A. Liljeborg, A confocal laser microscope scanner for digital recording of optical serial sections, J. Microscopy, 153:171–180 (1989).CrossRefGoogle Scholar
  54. 53a.
    T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning optical microscopy, Academic Press, London (1984).Google Scholar
  55. 54.
    J. L. Platt and A. F. Michael, Retardation of fading and enhancement of intensity of immunofluorescence by p-Phenylenediamine, J. Histochem. Cytochem.,31:840–842 (1983).PubMedCrossRefGoogle Scholar
  56. 55.
    M. E. Carr, Jr. and J. Hermans, Size and density of fibrin fibers from turbidity, Macromolecules, 11:46–50 (1978).PubMedCrossRefGoogle Scholar
  57. 56.
    B. Blombäck and M. Blombäck, Purification of human and bovine fibrinogen, Arkiv Kemi, 10:415–443 (1957).Google Scholar
  58. 57.
    U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227:680–685 (1970).PubMedCrossRefGoogle Scholar
  59. 58.
    M. Okada and B. Blombäck, Factors influencing fibrin gel structure studied by flow measurements, Ann. N.Y. Acad. Sci., 408:233–253 (1983).PubMedCrossRefGoogle Scholar
  60. 59.
    T. Takala, H. Oksa, V. Rasi and R. Tuimala, Dysfibrinogenemia associated with thrombosis and third trimester fetal loss. A case report, Thromb. Res., In press (1990).Google Scholar
  61. 60.
    A. Hamsten, U. de Faire, G. Walldius, G. Dahlén, A. Szamosi, C. Landou, M. Blomäck and B. Wiman, Plasminogen activator inhibitor in plasma: Risk factor for recurrent myocardial infarction, The Lancet, ii: 3–9 (1987).CrossRefGoogle Scholar
  62. 61.
    A. Hamsten, M. Blombäck, B. Wiman, J. Svensson, A. Szamosi, U. de Faire and L. Mettinger, Haemostatic function in myocardial infarction, Brit. Heart J., 55:58–66 (1986).PubMedCrossRefGoogle Scholar
  63. 62.
    V. Howard, S. Reid, A. Baddeley and A. Boyde, Unbiased estimation of particle density in the tandem scanning reflected light microscope, J. Microscopy, 138:203–212 (1985).CrossRefGoogle Scholar
  64. 63.
    B. Blombäck, Studies on the action of thrombic enzymes on bovine fibrinogen as measured by N-terminal analysis, Arkiv Kemi, 12:321–335 (1958).Google Scholar
  65. 64.
    W. A. Voter, C. Lucaveche and H. P. Erickson, Concentration of protein in fibrin fibers and fibrinogen polymers determined by refractive index matching, Biopolymers,25:2375–2384 (1986).PubMedCrossRefGoogle Scholar
  66. 65.
    G. W. Nelb, C. Gerth, J. D. Ferry and L. Lorand, Rheology of fibrin clots. III. Shear creep and creep recovery of fine ligated and coarse unligated clots, Biophys. Chem., 5:377–387 (1976).PubMedCrossRefGoogle Scholar
  67. 66.
    R. R. Hantgan and J. Hermans, Assembly of fibrin - A light scattering study, J. Biol. Chem., 254:11272–11281 (1979).PubMedGoogle Scholar
  68. 67.
    T. C. Laurent, Enzyme reactions in polymer media, Eur. J. Biochem., 21:498–506 (1971).PubMedCrossRefGoogle Scholar
  69. 68.
    M. Okada, B. Blombäck, M.-D. Chang and B. Horowitz, Fibronectin and fibrin gel structure, J. Biol. Chem., 260:1811–1820 (1985).PubMedGoogle Scholar
  70. 69.
    U. Larsson, R. Rigler, B. Blombäck, K. Mortensen and R. Bauer, Polymerisation of fibrinogen to fibrin studied by time-resolved small angel neutron scattering, in: Springer Series in Biophysics, Structure, Dynamics and Function of Biomolecules, A. Ehrenberg, R. Rigler, A. Gräslund and L. Nilsson, eds., Springer Verlag, Heidelberg (1987).Google Scholar
  71. 70.
    L. A. Carlson, L. E. Böttiger and P. E. Ahfeldt, Risk factors for myocardial infarction in the Stockholm prospective study, Acta Med. Scand., 206:351–360 (1979).PubMedCrossRefGoogle Scholar
  72. 71.
    A. L. Copley, The endoendothelial fibrin(ogenin) lining and its physiological significance, Biorheology, 25:377–399 (1988).PubMedGoogle Scholar
  73. 72.
    A. L. Copley, Perihemorheology: The bridge between the vessel-blood organ and the organs it penetrates, Biorheology, 26:377–388 (1989).PubMedGoogle Scholar
  74. 73.
    Copley, A. L., The endo-endothelial fibrin lining. A historical account, in:The endoendothelial fibrin lining. Symposium of the XII Eur. Conf. on Microcirculation, Jerusalem, Israel, Sept (1982), A. L. Copley, ed., Pergamon Press, New York-Oxford, Thromb. Res. Suppl. V (1983).Google Scholar
  75. 74.
    S. D. Lewis, L. Lorand, J. W. Fenton, II and J. A. Shafer, Catalytic competence of human a-and y-thrombin in the activation of fibrinogen and factor XIII, Biochemistry, 26:7597–7603 (1987).PubMedCrossRefGoogle Scholar
  76. 75.
    C. S. Greenberg, K. E. Achyuthan, S. Rajagopalan and S. V. Pizzo, Characterization of the fibrin polymer structure that accelerates thrombin cleavage of plasma factor XIII, Arch. Biochem. Biophys., 262:142–148 (1988).PubMedCrossRefGoogle Scholar
  77. 76.
    Y. Ando, S. Imamura, Y. Yamagata, A. Kitahara, H. Saji, T. Murachi and R. Kannagi, Platelet factor XIII is activated by calpain, Biochem. Biophys. Res. Commun., 144:484–490 (1987).PubMedCrossRefGoogle Scholar
  78. 77.
    B. Hessel, L. Adamson, R. Procyk, L. Therkildsen, S. Stenbjerg, B. Blombäck, Fibrinogen Aarhus and factor XIII induced polymerization and gel formation, Brit. J. Haematology, 66:355–361 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • B. Blombäck
    • 1
    • 2
  • D. Banerjee
    • 2
  • K. Carlsson
    • 3
  • A. Hamsten
    • 4
  • B. Hessel
    • 1
  • R. Procyk
    • 2
  • A. Silveira
    • 1
  • L. Zacharski
    • 5
  1. 1.Karolinska InstitutetStockholmSweden
  2. 2.The New York Blood CenterNew YorkUSA
  3. 3.The Royal Institute of TechnologyStockholmSweden
  4. 4.King Gustaf V Research InstituteKarolinska HospitalStockholmSweden
  5. 5.Veterans Administration HospitalUSA

Personalised recommendations