Skip to main content

New Basic Theory from Laser-Plasma Double Layers: Generalization to Degenerate Electrons and Nuclei

  • Chapter
Laser Interaction and Related Plasma Phenomena
  • 177 Accesses

Abstract

The study of laser-plasma interaction resulted in several extensions and new developments of plasma theory including the general formulation of the nonlinear force of laser-plasma interaction, the importance of collisions, quantum collisions and to the discovery of dynamic internal electric fields and double layers in inhomogeneous plasmas. The resulting surface tension in cavitons and at plasma boundaries (due to the faster emitted electrons) results in stabilization against Raleigh-Taylor instability. The same occurs with the degenerate electron gas within the ion lattice of a metal: the electrons try to leave the ion lattice with the Fermi energy until a double layer is being built up. The resulting surface tension immediately agrees with measured values from metals. This can be applied to explain the driving surface force of the Marangoni flow by the flow the electrons in the electron layer swimming at the metal surface. We further derive Hofstadter’s charge decay in nuclei from a Debye length and calculate the measured surface energy of nuclei.

Supported by the WE-Heraeus Foundation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.A. Krall and A.W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, New York, 1973).

    Google Scholar 

  2. S. Eliezer, A.K. Ghatak, H. Hora and E. Teller, Equations of State. (Cambridge University Press, Cambridge, 1986).

    Google Scholar 

  3. H. Hora, Laser Plasmas and Nuclear Energy (Plenum, New York, 1975).

    Book  Google Scholar 

  4. M. Lubiri, ECLIM 74th Conference, Garching, April 1974.

    Google Scholar 

  5. S. Jaeckel, B. Perry and M. Lubin, Phys. Rev. Lett. 37, 95 (1976).

    Article  Google Scholar 

  6. R. Dragila, R.A.M. Maddever, and B. Luther-Davies, Phys. Rev. A 36, 5292 (1987).

    Article  Google Scholar 

  7. A. Maddever, B. Luther-Davies, and R. Dragila, Phys. Rev. A (1990), A. Maddever, PhD Thesis Australian National University 1988.

    Google Scholar 

  8. J.H. Nuckolls, Physics Today 35, (No. 9) 24 (1982).

    Article  Google Scholar 

  9. Y. Kato, K. Mima et al, Phys. Rev. Lett. 53, 1057 (1984)

    Article  Google Scholar 

  10. Obenschain et al, Phys. Rev. Lett. 56, 2807 (1986)

    Article  Google Scholar 

  11. Deng Ximing and Yu Wenyan, Advances in Inertial Confinement Fusion Res. (IAEA, Kobe, Nov. 1983), C. Yamanaka ed. (ILE Osaka 1984) p. 66. (1982)

    Google Scholar 

  12. Tan Weihan et al, Laser and Part. Beams 3, 237 (1985).

    Article  Google Scholar 

  13. Gu Min and H. Hora, Chinese Journal of Lasers 16, 656 (1989).

    Google Scholar 

  14. H. Hora, L. Cicchitelli, Gu Min, G.H. Miley, G. Kasotakis, and R.J. Stening, Laser Interaction and Related Plasma Phenomena, H. Hora and G.H. Miley eds. (Plenum, New York 1990). Vol. 9, p.

    Google Scholar 

  15. H. Hora, Physics of Laser Driven Plasmas (Wiley, New York 1981).

    Google Scholar 

  16. S. Eliezer and H. Hora, Physics Reports 172 339 (1989); Fusion Technol. 16, 419 (1989)

    Article  Google Scholar 

  17. H. Hora, P. Lalousis, and S. Eliezer, Phys. Rev. Lett. 53, 1650 (1984).

    Article  Google Scholar 

  18. R.M. Kulsrud, Physics Today, 34 (No. 4) 56 (1983) 3rd col, 7th line.

    Google Scholar 

  19. H. Alfven, Cosmic Plasmas (Reidel, Dordrecht, 1981).

    Book  Google Scholar 

  20. H. Hora, S. Eliezer, M.P. Goldsworthy, R.J. Stening, and H. Szichman, Laser Interaction and Related Plasma Phenomena, H. Hora and G.H. Miley eds. (Plenum, New York, 1988) Vol. 8, p.293.

    Google Scholar 

  21. A. Schlüter, Z. Naturforsch, 5A, 72 (1950).

    Google Scholar 

  22. H. Hora, Phys. Fluids 12, 182 (1969).

    Article  Google Scholar 

  23. L. Spitzer, Physics of Fully Ionized Plasmas (Wiley, New York, 1959).

    Google Scholar 

  24. A. Zeidler, H. Schnabe, and P. Mulser, Phys. Fluids 28, 372 (1985).

    Article  MATH  Google Scholar 

  25. H. Hora, Phys. Fluids 28, 3705 (1985).

    Article  MATH  Google Scholar 

  26. T. Rowlands, Plasma Physics (1990).

    Google Scholar 

  27. R. Lüst, Z. Astrophhys. 37, 67 (1955).

    MATH  Google Scholar 

  28. H. Hora, Inst. Plasmaphysik, Garching Reports 6-23 and 6-27 (1964)

    Google Scholar 

  29. H. Hora, and H. Wilhelm, Nuclear Fusion 10, 111 (1970).

    Article  Google Scholar 

  30. R.B. White and F.F. Chen, Plasma Physics, 16, 567 (1974).

    Article  Google Scholar 

  31. H. Hora, and A.K. Ghatak, Phys. Rev. A31, 3473 (1985)

    Article  Google Scholar 

  32. M.P. Goldsworthy, F. Green, P. Lalousis, R.J. Stening, S. Eliezer and H. Hora, IEEE Trans. Plasma Sc. PS-14, 823 (1986).

    Article  Google Scholar 

  33. R. Fedosejevs et al, Phys. Rev. Lett. 39, 932 (1977)

    Article  Google Scholar 

  34. H. Azechi et al, Phys. Rev. Lett. 932 (1977)

    Google Scholar 

  35. P. Wagli, and T.P. Donaldson, Phys. Rev. Lett. 40, 875 (1978)

    Article  Google Scholar 

  36. F.J. Mayer et al, Phys. Rev. Lett. 40, 30 (1978)

    Article  Google Scholar 

  37. B. Luther-Davies and J.L. Hughes, Opt. Comm. 18, 605 (1976)

    Article  Google Scholar 

  38. A. Montes, and O. Willi, Plasma Phys. 24, 67 (1982).

    Article  Google Scholar 

  39. T.P. Hughes and M.B. Nicholson-Florence, J. Phys. A1, 588 (1968).

    Google Scholar 

  40. H. Hora, Opt. Comm. 41, 268 (1982).

    Article  Google Scholar 

  41. Heidi Fearn, and M.O. Scully, Laser Interaction and Related Plasma Phenomena. H. Hora and G.H. Miley eds., (Plenum, New York 1990) Vol. 9, p.

    Google Scholar 

  42. H.A. Bethe, Handbuch der Physik, H. Geiger, and L. Scheel eds., (Springer, Berlin 1933) Vol. 24, p.497.

    Google Scholar 

  43. R.E. Marshak, Ann. N.Y. Acad. Sci. 41, 49 (1941).

    Article  Google Scholar 

  44. H. Hora, Nuovo Cimento, 64B, 1 (1981)

    Article  Google Scholar 

  45. G. Grieger and Wendelstein VII — Team, Plasma Physics and Controlled Nuclear Fusion Research 1980 (IAEA Vienna 1981) Vol. I, p.173 and p. 185.

    Google Scholar 

  46. J. Hugill, Nuclear Fusion 23, 331 (1983), Analyzing results given there by Dimock et al, Fig. 5.

    Article  Google Scholar 

  47. K.A. Razumova Plasma Physics 26, 37 (1984).

    Google Scholar 

  48. G. Knorr and Ch. Goerz, Astrophys. Space Sci. 31, 209 (1974).

    Article  Google Scholar 

  49. N. Hershkowitz, Space Science Rev. 41, 351 (1985)

    Article  Google Scholar 

  50. R. Schrittwieser, and G. Eder eds. Double Layers (Inst.) Theor. Phys. Innsbruck 1984).

    Google Scholar 

  51. T. Sato and H. Okuda, Phys. Rev. Lett. 44, 740 (1980)

    Article  Google Scholar 

  52. T.K. Yabe, K. Mima, K. Yoshikawa, H. Takabe, and M. Hawano, Nucl. Fusion 21, 803 (1981).

    Article  Google Scholar 

  53. A.C. Williams, ed., Laser and Particle Beams 5, No. 2 (1987).

    Google Scholar 

    Google Scholar 

  54. A.L. Peratt, Laser and Particle Beams, 6, 474 (1988), IEEE Trans. Plasma Sc. PS-17, 65 (1989).

    Google Scholar 

  55. S.I. Anisimov, and Yu. V. Medvedev, Sov. Phys. JETP 49, 62 (1979).

    Google Scholar 

  56. H. Hora, Z. Phys. 226 (1969).

    Google Scholar 

  57. V.V. Krobkin, and A.J. Alcock, Phys. Rev. Lett. 21, 1433 (1968)

    Article  Google Scholar 

  58. M.C. Richardson and A.J. Alcock, Appl. Phys. Lett. 18, 357 (1971).

    Article  Google Scholar 

  59. F.E. Irons, R.W. McWhirter, and N.J. Peacock, J. Phys. B5, 1975 (1972).

    Google Scholar 

  60. H. Hora, Laser Interaction and Related Plasma Phenomena, H. Schwarz et al eds. (Plenum, New York 1971), Vol. 1, p.387.

    Google Scholar 

  61. P. Lalousis, PhD Thesis, Univ. New South Wales 1983).

    Google Scholar 

  62. P. Lalousis and H. Hora, Laser and Particle Beams, 11, (1983)

    Google Scholar 

  63. H. Hora, P. Lalousis and S. Eliezer, Phys. Rev. Lett. 53, 1650 (1984).

    Article  Google Scholar 

  64. J.W. Shearer, R.E. Kidder and J.W. Zin, Bull. Amer. Phys. Soc. 15, 1483 (1970).

    Google Scholar 

  65. S. Eliezer and A. Ludmirski, Laser and Particle Beams 1, 251 (1983).

    Article  Google Scholar 

  66. R. Dragila, Laser and Particle Beams 3, 79 (1985).

    Article  Google Scholar 

  67. M. Goldsworthy, H. Hora and R.J. Stening, Plasma Physics and Controlled Nuclear Fusion Research 1988 (IAEA Vienna 1989) Vol. III, p.181.

    Google Scholar 

  68. Aleksandrova, Brunner et al, Laser and Particle Beams 3, 197, (1985)

    Article  Google Scholar 

  69. Tan Weihan, Lin Zunqi, Gu Min et al, Phys. Fl. 30, 1510 (1987).

    Article  Google Scholar 

  70. N.G. Land, and W.I. Kohn, Phys. Rev. Bl, 4555 (1970).

    Google Scholar 

  71. H. Alfven, Laser and Particle Beams 6, 389 (1988), A.L. Peratt ed, Laser and Particle Beams 6 No. 3(1988).

    Article  Google Scholar 

  72. H. Szichman, Phys. Fluids, 31, 17002 (1988).

    Article  Google Scholar 

  73. G. Gouy, J. Chim. Phys., 29, 145 (1903).

    MATH  Google Scholar 

  74. D.L. Chapman, Phil. Mag., 25, 475 (1913).

    Article  MATH  Google Scholar 

  75. M.P. Tosi, Liquid Surfaces and Solid-Liquid Interfaces in Amorphous Solids and the Liquid State, E. March et al., Eds. (Plenum, New York, 1985) p. 125.

    Chapter  Google Scholar 

  76. L. Tonks and I. Langmuir, Phys. Rev., 33, 195 (1929).

    Article  MATH  Google Scholar 

  77. S. Lundquist, “Electrical response of surfaces,” Surface Sci., vol. 6, p,.331, 1974.

    Google Scholar 

  78. G. Rickayzen, Liquid Surfaces and Solid-Liquid Interfaces in Amorphous Solids and the Liquid State, E. March et al., Eds. New York: Plenum, 1985, p.523.

    Google Scholar 

  79. Z. Henis, S. Eliezer and A. Zigler, J. Phys. G15, L219 (1989).

    Article  Google Scholar 

  80. H. Hora, L. Cicchitelli, G.H. Miley, M. Ragheb, A. Scharmann and W. Scheid, Nuovo Cimento 12D, 393 (1990).

    Article  Google Scholar 

  81. G. Tsotridi, H. Rother, and E.D. Hondros, Naturwissenschenften, 76, 216 (1989)

    Article  Google Scholar 

  82. D. Schwabe, Phys. Chem., Hydrodyn. 2, 263 (1981).

    Google Scholar 

  83. H.G. Ahlstrom, Physics of laser fusion”, Lawrence Livermore Nat. Lab., Livermore, CA, Tech. Rep., 1982, Montes and Willi, see Ref. [27].

    Google Scholar 

  84. G.I. Taylor, “Disintegration of water drops in an electric field”, Proc. Roy. Soc, Ser. A, vol. A280, p.383, 1964.

    Article  Google Scholar 

  85. H. Takabe, K. Mima, L. Montierth, and R.L. Morse, Phys. Fluids, 28, 3676 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  86. H. Hora, Gu Min, S. Eliezer, P. Lalousis, R.S. Pease, and H. Szichman, IEEE Trans. Plasma Sci. PS-17, (1989).

    Google Scholar 

  87. H. Hora, Naturwissenschaften 76, 214 (1989).

    Article  Google Scholar 

  88. R. Hofstadter: Australian Phys. 24, 236 (1987).

    Google Scholar 

  89. S.A. Moszkovski in: Handbuch der Physik, Vol. 34, p.432. (S. Flügge, ed.). Berlin: Springer 1957.

    Google Scholar 

  90. S. Ono, S. Kondo, in: Handbuch der Physik, Vol. X, p.134. (S. Flügge, ed.). Berlin: Springer 1960.

    Google Scholar 

  91. R. Stock, CERN Courier (Dez. 1987)

    Google Scholar 

  92. J. Rafelski, Phys. Lett. B207, 371 (1988).

    Article  Google Scholar 

  93. C.W. Mendel, J.N. Olsen: Phys. Rev. Lett. 34, 859 (1975); see also Ref. [50].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hora, H., Eliezer, S., Pease, R.S., Scharmann, A., Schwabe, D. (1991). New Basic Theory from Laser-Plasma Double Layers: Generalization to Degenerate Electrons and Nuclei. In: Hora, H., Miley, G.H. (eds) Laser Interaction and Related Plasma Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3804-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3804-2_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6696-6

  • Online ISBN: 978-1-4615-3804-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics