Skip to main content
  • 124 Accesses

Abstract

There are two essential attributes of electrons for superconductivity: mobility and pairing. While this is not directly obvious, these two attributes compete against each other. High-temperature superconductivity may be obtained by combining two-components, one which provides pairing and the other mobility. In the local-strong-pairing (negative-U lattice) limit of superconductivity Tc is controlled by the hopping of electron pairs rather than by the pair binding energy. Coupling a negative-U lattice to delocalized electron states increases the hopping and thus the critical temperature. In parallel, Cooper-pair superconductivity is induced in the delocalized electrons. In the normal state both Bosonic and Fermionic states exist, and below Tc Bosonic states exist in the Fermionic gap. It is suggested that superconductivity in the new class of oxide superconductors is due to locally paired electrons on the lattice of oxygen vacancies combined with conducting metal-oxide layers. The discussion includes the superconducting properties Tc, Δ, Hc and ξ, long wave collective excitations, normal state properties including resistance and tunneling, and the isotope shift. Unusual properties are predicted including neutral Fermion excitations due to hybridization of electrons and holes, a spreading of the Femionic gap onset, a separation between the resistive transition Tc’ and the evaporation of the condensate Tc, anomalies in sound and bulk modulii at Tc, linear temperature dependence of normal state resistivity, linear voltage dependence in normal state tunneling conductance, and finite zero bias conductance in superconducting state tunneling. A new signature of structural coherence which can be seen in channeling experiments and other structural probes is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. A. Baraff, E. O. Kane, and M. Schlüter, Phys. Rev. B 21, 5662 (1980); G. D. Watkins and J. R. Troxell, Phys. Rev. Lett. 44, 593 (1980); D. Vanderbilt and J. D. Joannopoulos, Phys. Rev. Lett. 49, 823 (1982); R. Car, P. Kelly, A. Oshiyama, S. T. Pantelides, Phys. Rev. Lett. 52, 1814 (1984); Y. Bar-Yam and J. D. Joannopoulos, Phys. Rev. Lett. 56, 2203 (1986)

    ADS  Google Scholar 

  2. The direct involvement of oxygen vacancies in superconductivity has been discussed by J. C. Phillips without explicitly considering real space pairing, see Phys. Rev. Lett. 59, 1856 (1987); Phys. Rev. B 39, 7356 (1989) and unpublished.

    Google Scholar 

  3. W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989)

    Article  ADS  Google Scholar 

  4. P. Nozieres and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985); C. M. Varma, Phys. Rev. Lett. 61, 2713 (1988); S. Robaszkiewicz, R. Micnas, and K. A. Chao, Phys. Rev. B 23, 1447 (1981) and 24, 1579 (1981).

    Article  ADS  Google Scholar 

  5. P. Nozieres and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985)

    Article  ADS  Google Scholar 

  6. Metastable Bosons in a two-component formulation are discussed as early as M. R. Schafroth, Phys. Rev. 96, 1442 (1954); and more recently by J. Ranninger and S. Robaszkiewicz, Physica 125B, 468 (1985); S. P. Ionov, Izv. Akad. Nauk SSSR Ser. Fiz. 49, 310 (1985); G. M. Éliashberg, JETP Lett. Vol. 46, S81 (1987); D. M. Newns Phys. Rev. B 36, 5595 (1987); D. M. Newns, M. Rasolt, and P. C. Pattnaik, Phys. Rev. B 38, 6513 (1988); J. Ranninger, R. Micnas, and S. Robaszkiewicz, Ann. Phys. Fr. 13, 455 (1988); R. Freidberg and T. D. Lee, Phys. Lett. A 138, 423 (1989); Phys. Rev. B 40, 6745-6762 (1989); L. P. Gorkov and G. M. Éliashberg, JETP Lett. Vol. 46, S84 (1987); R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113(1990)

    Google Scholar 

  7. E. Simánek, Solid State Comm. 32, 731 (1979); C. S. Ting, D. N. Talwar, and K. L. Ngai Phys. Rev. Lett. 45, 1213 (1980); H.-B. Schüttler, M. Jarrell and D. J. Scalapino Phys. Rev. Lett. 58, 1147 (1987); Phys. Rev. B 39, 6501 (1989). In this work both components are treated equally.

    Article  Google Scholar 

  8. Other possible terms in the Hamiltonian include a coupled charge density wave promoting term. It does not change the results, near μ=EB/2, because it competes against the large t term, and tne possible CDW small induced gap need not coincide with EB/2.

    Google Scholar 

  9. M. Tinkham, “Introduction to Superconductivity”, Mcgraw-Hill, NY (1975)

    Google Scholar 

  10. Structural relaxation dynamical effects have not been included.

    Google Scholar 

  11. This neglects special density-of-states enhancements, particularly in quasi-two dimensional systems, see J. E. Hirsch and D. J. Scalapino, Phys. Rev. Lett. 56, 2732 (1986)

    Google Scholar 

  12. Even in the special 2-D nearest neighbor case this model does not suffer from the competition between charge-density-wave and superconducting order. The charge density wave order results from the nearest neighbor repulsion. R. T. Scalettar, E. Y. Loh, J. E. Gubernatis, A. Moreo, S. R. White, D. J. Scalapino, R. L. Sugar and E. Dagotto Phys. Rev. Lett. 62, 1407 (1989)

    Google Scholar 

  13. The integral is the same as that used for determining the BCS Tc but its use is significantly different.

    Google Scholar 

  14. Oxygen vacancies in Cu-0 based superconductors lower Dc(μ). Tc can thus be lowered as oxygen vacancies are added in the large concentration limit even though they are essential to superconductivity.

    Google Scholar 

  15. “Theory of quantum liquids” D. Pines and P. Nozières (Benjamin, NY, 1966)

    Google Scholar 

  16. P. A. Lee and N. Read, Phys. Rev. Lett. 58, 2691 (1987)

    Article  ADS  Google Scholar 

  17. The breakdown of the quasi-particle picture may happen earlier. In any case Tc occurs in the region of rapidly decreasing Δ’(T) so Tc’(μ) is of order Tc(μ).

    Google Scholar 

  18. “Solid State Physics”, W. A. Harrison, (p. 333)

    Google Scholar 

  19. Z. Vardeny and J. Tauc, Phys. Rev. Lett. 54, 1844 (1985)

    Article  ADS  Google Scholar 

  20. Y. Bar-Yam, J. D. Joannopoulos and D. Adler Phys. Rev. Lett. 54, 1844 (1985)

    Article  Google Scholar 

  21. A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W.-P. Su Rev. Mod. Phys. 60, 781 (1988)

    Article  ADS  Google Scholar 

  22. Y. Bar-Yam (unpublished)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bar-Yam, Y. (1990). Two-Component Superconductivity. In: Avishai, Y. (eds) Recent Progress in Many-Body Theories. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3798-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3798-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6693-5

  • Online ISBN: 978-1-4615-3798-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics