Skip to main content

Bose Condensate in Superfluid 4He and Momentum Distributions by Deep Inelastic Scattering

  • Chapter
  • 111 Accesses

Abstract

In 1938 London [1,2] offered an explanation of the observation earlier that year of superfluid behavior in liquid 4He when it is cooled below a critical temperature of 2.17 °K. He argued that the superfluid transition was analogous to the Bose condensation of an (ideal) gas of non-interacting atoms obeying the same Bose-Einstein spin-statistics relation as 4He atoms. This relation requires the many-atom wave function to be completely symmetric in the atomic coordinates, resulting in a preference for the atoms to occupy the same single-particle states. For a finite system of atoms the momenta are quantized in spacings proportional to the inverse of the system size. At high temperatures the fraction of atoms occupying any one of the momentum states also scales as the inverse of the size. However, as the temperature is reduced below a critical Bose condensation temperature a significant fraction of the atoms, independent of the system size, begins to occupy the zero-momentum state. The Bose condensate fraction of an ideal gas approaches one at zero temperature. For 4He, by analogy, at high temperatures in the normal fluid the condensate fraction should be zero, but as temperatures are reduced below the superfluid transition temperature the condensate fraction should rise to a non-zero value. The effect of the strong interactions among the (non-ideal) 4He atoms is to deplete the zero temperature condensate fraction from one in an ideal gas to a value much less than one for 4He. While the analogy between superfluidity and Bose condensation is imperfect, the concept of a Bose condensate in the superfluid phase has survived. A variety of increasingly sophisticated many-body calculations have predicted a condensate fraction of about 10 % at zero temperature in superfluid 4He at SVP. Because of the importance of superfluidity and the related phenomenon of superconductivity to condensed matter physics, this simple prediction has motivated a more than twenty year effort involving up to one hundred scientists to measure the Bose condensate fraction in 4He.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. London, Nature 141, 643 (1938).

    Article  ADS  Google Scholar 

  2. For a tutorial discussion of the relation beween Bose condensation and superfluidity see D. R. Tilley, J. Tilley, Superfluidity and Superconductivity-2nd edition, Adam Hilger Ltd., 1986.

    Google Scholar 

  3. For a complete review of the current state of the art, see Momentum Distributions, R. N. Silver, P. E. Sokol, eds., Plenum Press, 1989. For an introductory survey of momentum distribution studies across all of physics, see the article by P. E. Sokol, R. N. Silver, J. W. Clark, p. 1-38.

    Google Scholar 

  4. P. C. Hohenberg, P. M. Platzman, Phys. Rev. 152, 198 (1966); see also A. Miller, D. Pines, P. Nozieres, Phys. Rev. 127, 1452 (1962).

    Article  ADS  Google Scholar 

  5. G. B. West, Physics Reports 18C, 263 (1975); see also G. B. West, in ref. [3], p. 95-110.

    Article  ADS  Google Scholar 

  6. J. W. Clark, R. N. Silver, Proceedings of the Third International Conference on Nuclear Reaction Mechanisms, Varenna, Italy, June 13-18, 1988, E. Gadioli, ed. (Ricerca Scientifica ed Educazione Permanente, Universita degli Studi di Milano), Supplemento 66, p. 531-540(1988).

    Google Scholar 

  7. W. G. Stirling, E. F. Talbot, B. Tanatar, H. R. Glyde, J. Low Temperature Physics, 73, 33 (1988)

    Article  ADS  Google Scholar 

  8. T. R. Sosnick, W. M. Snow, P. E. Sokol, R. N. Silver, Europhysics Letters 9, 707 (1989).

    Article  ADS  Google Scholar 

  9. P. Whitlock, R. M. Panoff, Can. J. Phys. 65, 1409 (1987).

    Article  ADS  Google Scholar 

  10. D. M. Ceperley, E. L. Pollock, Can. J. Phys. 65, 1416 (1987); see also D. M. Ceperley, in ref. [3], p. 71-80.

    Article  ADS  Google Scholar 

  11. For reviews, see H. R. Glyde, E. C. Svensson, in Methods of Experimental Physics, V. 23B, D. L. Price, K. Skold, eds., Academic Press, 1987, p. 303-404; E. C. Svensson, V. F. Sears, Physica 137B, 126-140 (1986).

    Google Scholar 

  12. V. F. Sears, E. C. Svensson, P. Martel, A. D. B. Woods, Phys. Rev. Lett. 49, 279 (1982).

    Article  ADS  Google Scholar 

  13. P. Martel, E. C. Svensson, A. D. B. Woods, V. F. Sears, R. A. Cowley, J. Low Temp. Phys. 23, 285 (1976).

    Article  ADS  Google Scholar 

  14. J. Gavoret, P. Nozieres, Ann. Phys. (N.Y.) 28, 349 (1964); P. C. Hohenberg, P. C. Martin, Ann. Phys. (N. Y.) 34, 291 (1965).

    Article  ADS  Google Scholar 

  15. A. Griffin, Phys. Rev. B32, 3289 (1985).

    ADS  Google Scholar 

  16. R. K. B. Helbing, J. Chem. Phys. 50, 493 (1969).

    Article  ADS  Google Scholar 

  17. H. A. Gersch, L. J. Rodriguez, Phys. Rev. A8, 905 (1973).

    ADS  Google Scholar 

  18. L. J. Rodriguez, H. A. Gersch, H. A. Mook, Phys. Rev. A9, 2085 (1974).

    ADS  Google Scholar 

  19. P. Martel, E. C. Svensson, A. D. B. Woods, V. F. Sears, R. A. Cowley, J. Low Temp. Phys. 23, 285(1986).

    Article  ADS  Google Scholar 

  20. See also H. R. Glyde, W. G. Stirling, in ref. [3], p. 111-122.

    Google Scholar 

  21. R. N. Silver in Condensed Matter Theories V. 3, J. S. Arponen, R. F. Bishop, M. Manninen, eds., p. 131–142, Plenum Press, 1988.

    Google Scholar 

  22. R. N. Silver, Phys. Rev. B37, 3794 (1988); ibid B38, 2283 (1988). The latter paper contains a rather complete list of theoretical papers on final state effects in deep inelastic neutron scattering.

    MathSciNet  ADS  Google Scholar 

  23. A. Rinat, M. Butler, to be published.

    Google Scholar 

  24. R. W. Zwanzig, Physica (Utrecht) 30, 1109 (1964); see also P. N. Argyres, J. L. Sigel, Phys. Rev. Letts. 31, 1397 (1973); Phys. Rev. B9, 3197 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  25. R. K. B. Helbing, J. Chem. Phys. 50, 493 (1969).

    Article  ADS  Google Scholar 

  26. R. N. Silver, Phys. Rev. B39, 4022 (1989).

    ADS  Google Scholar 

  27. M. L. Ristig, J. W. Clark, in ref. [3], p. 365-370; M. L. Ristig, J. W. Clark, Phys. Rev. B40, 4355 (1989).

    Google Scholar 

  28. P. E. Sokol, T. R. Sosnick, W. M. Snow, in ref. [3], p. 139-158.

    Google Scholar 

  29. K. Herwig, W. M. Snow, P. E. Sokol, to be published.

    Google Scholar 

  30. E. Manousakis, V. R. Pandharipande, Q. N. Usmani, Phys. Rev. B31, 7022 (1985); E. Manousakis, V. R. Pandharipande, ibid., 7029; see also, E. Manousakis, in ref. [3], 81-94.

    ADS  Google Scholar 

  31. D. S. Sivia, R. N. Silver, in ref. [3], p. 377-380.

    Google Scholar 

  32. P. E. Sokol, R. N. Silver, T. R. Sosnick, W. M. Snow, in ref. [3], 385-392; W. M. Snow, T. R. Sosnick, P. E. Sokol, R. N. Silver, to be published.

    Google Scholar 

  33. This is essentially the same as P. M. Platzman, N. Tzoar, Phys. Rev. B30, 6397 (1984).

    Google Scholar 

  34. We thank Prof. Gersch for coming out of retirement to perform these calculations.

    Google Scholar 

  35. R. N. Silver, to be published.

    Google Scholar 

  36. R. Feltgen, H. Kirst, K. A. Koehler, F. Torello, J. Chem. Phys. 26, 2360 (1982).

    Article  ADS  Google Scholar 

  37. P. Whitlock, R. M. Panoff, Can. J. Phys. 65, 1409 (1987); see also R. M. Panoff, P. A. Whitlock, in ref. [3], p. 59-70.

    Article  ADS  Google Scholar 

  38. E. Manousakis, S. Fantoni, V. R. Pandharipande, Phys. Rev. B28, 3370 (1983).

    ADS  Google Scholar 

  39. J. P. Bouchaud, C. Lhuillier, Europhys. Lett. 3, 1273 (1987); J. P. Bouchaud, C. Lhuillier, Z. Phys. B75, 283 (1989).

    Article  ADS  Google Scholar 

  40. For an experimental review, see I. Sick, in ref. [3], p. 175-186; D. Day, in ref. [3], p. 319-332.

    Google Scholar 

  41. For a theoretical discussion, see O.Benhar, A. Fabrocini, S.Fantoni, in ref. [3], p. 187-202.

    Google Scholar 

  42. V. R. Pandharipande, R. B. Wiringa, B. D. Day, Phys. Lett. 57B, 205 (1975).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Silver, R.N., Sokol, P.E. (1990). Bose Condensate in Superfluid 4He and Momentum Distributions by Deep Inelastic Scattering. In: Avishai, Y. (eds) Recent Progress in Many-Body Theories. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3798-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3798-4_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6693-5

  • Online ISBN: 978-1-4615-3798-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics