Skip to main content

Mechanisms of Oxidase Activation in Neutrophils

Importance of Intracellular Calcium and Cytoskeletal Interactions

  • Chapter
Blood Cell Biochemistry Volume 3

Part of the book series: Blood Cell Biochemistry ((BLBI,volume 3))

Abstract

Polymorphonuclear neutrophilic leukocytes, or neutrophils, play a key role in combating infection by killing the infecting microorganisms. These cells also play a role in wound healing by removing cell debris and extracellular material from the wound site. Neu-trophils leave the circulation and move through the tissues (by a process of chemotaxis) to the inflammatory site, where they accumulate in high density (up to 108/ml). The neutrophils at this site phagocytose the infecting microbes and kill them within phagosomes. This is achieved after the fusion of granules containing degradative and hydrolytic enzymes with the phagosome. Accompanying these events is activation of a non-mitochondria’ oxidase system, which generates superoxide ions (see Section 2), which dismutate to peroxide. The most abundant enzyme within the phagolysosome is the enzyme myeloperoxidase, which in the presence of the formed peroxide and chloride ions catalyzes the production of hypochlorite (Table I.) Hypochlorites as well as superoxide and peroxide are extremely toxic to the microbes within the vacuoles, which are consequently killed. Other reactions that also lead to reactive and hence toxic oxygen metabolites have been postulated (Table I).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aktories, K., Barmann, M., Ohishi, I., Tsuyama, S., Jacobs, K. H., and Habermann, E. 1986. Botulinum C2 toxin ADP-ribosylates actin, Nature (London) 322:390–392

    CAS  Google Scholar 

  • Allison, A. C., 1973, The role of microfilaments and microtubules in cell movement, endocytosis and exocytosis, Ciba Found. Symp. 14:109–148

    PubMed  CAS  Google Scholar 

  • Al-Mohanna, F. A., and Hallett, M. B., 1987, Actin polymerization modifies stimulus-oxidase coupling in rat neutrophils, Biochem. Biophys. Acta. 927:366–371

    PubMed  CAS  Google Scholar 

  • Al-Mohanna, F. A., and Hallett, M. B.,1988a, The use of fura 2 to determine the relationship between cytoplasmic free Ca2+ and oxidase activation in rat neutrophils, Cell Calcium 9:17–26

    CAS  Google Scholar 

  • Al-Mohanna, F. A. A., and Hallett, M. B., 1988b, Is actin polymerization in neutrophils regulated by intracellular Ca2+?, Eur. J. Clin. Invest. 18:A41.

    Google Scholar 

  • Al-Mohanna, F. A. and Hallett, M. B., 1989, Actin polymerization in neutrophils is triggered without a requirement for a rise in cytoplasmic Ca2+, Biochem J. 266:669–674

    Google Scholar 

  • Al-Mohanna, F. A., Ohishi, I., and Hallett, M. B., 1987, Botulinum C toxin potentiates activation of the neutrophil oxidase; further evidence for a role for actin polymerization, FEBS Lett. 219:40–44

    PubMed  CAS  Google Scholar 

  • Anderson, R., Glover, A., and Robson, A. R., 1977, The in vitro effects of histamine and metiamide on neutrophil motility and their relationship to intracellular cyclic nucleotide levels, J. Immunol. 118:1690-1696

    PubMed  CAS  Google Scholar 

  • Andrews, P. C., and Babior, B. M., 1983, Endogenous protein phosphorylation by resting and activated human neutrophils, Blood 61:333–342

    PubMed  CAS  Google Scholar 

  • Badwey, J. A., Cumutte, J. T., and Kamovsky, M. L., 1981 cis-Polyunsaturated fatty acids induce high levels of superoxide production by human neutrophils, J. Biol. Chem. 256:12640–12643

    PubMed  CAS  Google Scholar 

  • Badwey, J. A. Heyworth, P. G., and Kamovsky, M. L., 1984, Phosphorylation of both 47 and 49-KDa proteins accompanies superoxide release from neutrophils, Biochem. Biophys. Res. Commun. 158:1029–1035

    Google Scholar 

  • Baehner, R. L., and Boxer, L. A., 1979, Disorders of polymorphonuclear leukocyte functions related to alterations in integrated reactions of cytoplasmic constituents with the plasma membrane, Semin. Hematol. 16:148–161

    PubMed  CAS  Google Scholar 

  • Balridge, C. W., and Gerald, R. W., 1933, The extra respiration of phagocytosis, Am. J. Physiol. 103:235–239

    Google Scholar 

  • Bandmann, U., Norberg, B., and Rydgren, L., 1974, Polymorphonuclear leucocyte chemotaxis in Boyden chambers, Effect of 305–312

    Google Scholar 

  • Banks, P., Barker, M. D., and Burton, D. R., 1988, Recruitment of actin to the cytoskeleton of human monocyte-like cells activated by complement fragment C5a. Is protein kinase C involved?, Biochem. J. 252:765–768

    PubMed  CAS  Google Scholar 

  • Barrowman, M. M., Cockroft, S., and Gomperts, B. D., 1986, Two roles for guanine nucleotides in the stimulus-secretion coupling of neutrophils, Nature (London) 319:504–507

    PubMed  CAS  Google Scholar 

  • Bazzi, M. D., and Nelsesteun, G. L., 1987, Mechanism of protein kinase inhibition by sphingosine, Biochem. Biophys. Res. Commun., 146:203–207

    PubMed  CAS  Google Scholar 

  • Becker, E. L., Davis, A. T., Estensen, R. D., and Quie, P. G., 1972, Cytochalasins B. IV. Inhibition and stimulation of chemotaxis of rabbit and human polymorphonuclear leukocytes, J. Immunol. 108:396–402

    PubMed  CAS  Google Scholar 

  • Becker, E. L., Kermode, J. C., Naccache, P. H., Yassin, R., Marsh, M. L., Munoz, J. J., and Sha’afi, R. I., 1985, The inhibition of neutrophil granule enzyme secretion and chemotaxis by pertussis toxin, J. Cell Biol. 100:1641–1646

    PubMed  CAS  Google Scholar 

  • Bellavite, P., Jones, O. T. G., Cross, A. P., Papini, E., and Rossi, F., 1984, Composition of partially purified NADPH oxidase from pig neutrophils, Biochem. J. 223:639–648

    PubMed  CAS  Google Scholar 

  • Bennet, J. P., Cockcroft, S., and Gomperts, B. D., 1980, Use of cytochalasin B to distinguish between early and late events in neutrophil activation, Biochim. Biophys. Acta 601:584–591

    Google Scholar 

  • Berkow, R. L., and Kraft, A. S., 1985, Bryostatin a non-phorbol macrocyclic lactone activates intact human polymorphonuclear leukocytes and binds to the phorbol ester receptor, Biochem. Biophys. Res. Commun. 131:1109–1116

    PubMed  CAS  Google Scholar 

  • Bershadsky, A. D., and Vasiliev, J. M., 1988, Cytoskeleton, Plenum Press, New York

    Google Scholar 

  • Berton, G., Castella, M., Cabrini, G. and Rossi, F., 1985, Activation of mouse macrophages causes no change in expression and function of phorbol diester receptors but is accompanied by alterations in activity and kinetics of NADPH oxidase, Immunology 54:371–379

    PubMed  CAS  Google Scholar 

  • Berton, G., Zeni, L., Castella, M. A., and Rossi, F., 1986, Interferon-y is able to enhance the oxidative metabolism human neutrophils, Biochem. Biophys. Res. Commun. 138:1276–1282

    PubMed  CAS  Google Scholar 

  • Bolscher, B. G. J. M., van Zwieten, R., Kramer, I. M., Weening, R. S., Verhoeven, A. J., and Ross, D., 1989, A phosphoprotein of Mr 47,000 defective in autosomal chronic granulomatous disease, copurifies with one of two soluble components required for NADPH O oxidoreductase activity in human neutrophils, J. Clin. Invest. 83:757–763

    PubMed  CAS  Google Scholar 

  • Borregaard, N., Heiple, J. M., Simons, E. R., and Clark, R. A., 1983, Subcellular localisation of the b-cytochrome component of the human microbicidal oxidase: Translocation during activation, J. Cell Biol. 97:52–61

    PubMed  CAS  Google Scholar 

  • Boucek, M. M., and Snyderman, R., 1976, Calcium influx requirement for human neutrophil chemotaxis: Inhibition by lathanum ions, Science 193:905–907

    PubMed  CAS  Google Scholar 

  • Boxer, L. A., Hedley-Whyte, E. T., and Stossel, T. P. 1974, Neutrophil actin dysfunction and abnormal neutrophil behavior, New Eng. J. Med. 291:1093–1099

    PubMed  CAS  Google Scholar 

  • Boxer, L. A., Wantanake, A. M., and Rister, M., 1976, Correction of leukocyte function in Chediak-Higashi syndrome by ascorbate, N. Engl. J. Med. 295:1041–1045

    PubMed  CAS  Google Scholar 

  • Bradford, P. G., and Rubin, R. P., 1985, Characterisation of formylmethionyl-leucyl-phenylalanine stimulation of inositol triphosphate accumulation in rabbit neutrophils, Mol. Pharmacol. 27:74–78

    PubMed  CAS  Google Scholar 

  • Bradford, P. G., and Rubin, R. P., 1986, Guanine nucleotide regulated phospholipase C activity in permeabilized rabbit neutrophils, Biochem. J. 239:97–102

    PubMed  CAS  Google Scholar 

  • Bray, D., Heath, J., and Moss, D., 1986, The membrane-associated ‘cortex’ of animal cells: Its structure and mechanical properties. J. Cell. Sci. Suppl. 4:71–88

    PubMed  CAS  Google Scholar 

  • Bromberg, Y., and Pick, E., 1983, Unsaturated fatty acids as second messengers of superoxide generation in macrophages. Cell Immunol. 79:240–252

    PubMed  CAS  Google Scholar 

  • Bryan, J., and Kurth, M. C., 1984, actin-gelsolin interactions: Evidence for two actin-binding sites, J. Biol. Chem. 259:7480–7487

    PubMed  CAS  Google Scholar 

  • Burgoyne, R. D., and Cheek, T. R., 1987, Cytoskeleton: Role of fodrin in secretion, Nature (London) 326: 448

    PubMed  CAS  Google Scholar 

  • Burn, P., Rotman, A., Meyer, R. K., and Burger, M. M., 1985, Diacylglycerol in large-actinin/actin complexes and in the cytoskeleton of activated platelets, Nature (London) 31:469–472

    Google Scholar 

  • Burridge, K., and Feramisco, J. R., 1981, Non-muscle a-actinins are calcium-sensitive actin-binding proteins, Nature (London) 294:565–567.

    CAS  Google Scholar 

  • Burridge, K., and Feramisco, J. R., 1982, Alpha-actinin and vinculin for non-muscle cells: calcium sensitive interactions with actin, Cold Spring Harbor Symp. 46:587–597

    Google Scholar 

  • Campbell, A. K., and Hallett, M. B., 1983, Direct measurement of intracellular free calcium and oxygen radicals in polymorphonuclear leucocyte-erythrocyte “ghost” hybrids, J. Physiol. 338:537–550

    PubMed  CAS  Google Scholar 

  • Campbell, A. K., Daw, R. A., Hallett, M. B., and Luzio, J. P., 1981, Direct measurement of the increase in intracellular free calcium in concentration in response to the actin of complement. Biochem. J. 194:551–560

    PubMed  CAS  Google Scholar 

  • Campbell, A. K., Dormer, R. L., and Hallett, M. B. 1985, Coelenterate photoproteins as indicators of cytoplasmic free Ca2+ in small cells, Cell Calcium 6:69–82

    PubMed  CAS  Google Scholar 

  • Caner, J. E., 1965, Colchicine inhibits chemotaxis, Arthritis Rheum. 8:757–760

    PubMed  CAS  Google Scholar 

  • Castanga, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated phospholipid-dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem. 257:7847–7857

    Google Scholar 

  • Cassatella, M., Della Bianca, V., Berton, G., and Rossi, F., 1985, Activation by interferon-y of human macrophage capability to produce toxic oxygen molecules is accompanied by decreased Km of NADPH oxidase, Biochem. Biophys. Res. Commun. 132:908–914

    PubMed  CAS  Google Scholar 

  • Chafouleas, J. G., Dedman, J. R., Munjaal, R. P., and Means, A. R., 1979, Calmodulin; development and application of a sensitive radio immunoassay. J. Biol. Chem. 254:10262–10271

    PubMed  CAS  Google Scholar 

  • Chang, Y. H., 1975, Mechanism of action of colchicine. II. Effects of colchicine and its analogs on phagocytosis and chemotaxis in vitro. J. Pharmacol. Exp. Ther. 194:159–164

    PubMed  CAS  Google Scholar 

  • Chaponnier, C., Janmey, P. A., and Yin, H. L., 1986, The actin filament-severing domain of plasma gelsolin. J. Cell Biol. 103:1473–1481

    PubMed  CAS  Google Scholar 

  • Cheek, T. R., and Burgoyne, R. D., 1986, Nicotine-evoked disassembly of cortical actin filaments in adrenal chromaffin cells, FEBS Leu. 207:110–114

    CAS  Google Scholar 

  • Clarke, M., and Spudich, J. A., 1977, Non-muscle contractile proteins: The role of actin and myosin in cell motility and shape determination. Annu. Rev. Biochem. 46:797–822

    PubMed  CAS  Google Scholar 

  • Cochrane, C. G., 1984, Mechanisms of coupling stimulation and function in leukocytes, Fed. Proc. 43:2729–2731

    PubMed  CAS  Google Scholar 

  • Cockroft, S., 1986, The dependence on Ca2+ of the guanine nucleotide-activated polyphosphoinositide phosphodiesterase in neutrophil plasma membranes, Biochem. J. 240:503–507

    Google Scholar 

  • Cockroft, S., and Allen, D., 1984, The fatty acid composition of phosphatidylinositol, phosphatidate and 1,2,diacylglycerol in stimulated human neutrophils, Biochem. J. 222:557–561

    Google Scholar 

  • Cockroft, S., and Gomperts, B. D., 1985, Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase, Nature (London) 314:534–536

    Google Scholar 

  • Cockroft, S., Baldwin, J. M., and Allan, D., 1984, The Ca2+-activated polyphosphoinositide phosphodiesterase of human and rabbit neutrophil membranes, Biochem. J. 221:447–481

    Google Scholar 

  • Cooke, E., and Hallett, M. B., 1985, The role of c-kinase in the physiological activation of the neutrophil oxidase; evidence from pharmacological manipulation of c-kinase activity in intact cells, Biochem. J. 232:323–327

    PubMed  CAS  Google Scholar 

  • Cooke, E., Al-Mohanna, F. A., and Hallett, M. B., 1987, Diacylglycerol inhibitor, R59022, potentiates neutrophil oxidase activation by Ca2+-dependent stimuli, Biochem. Pharmacol. 36:3459–3463

    PubMed  CAS  Google Scholar 

  • Cooke, E., Al-Mohanna, F. A., and Hallett, M. B., 1989, Ca2+-dependent and independent mechanisms in neutrophil activation; roles of Kinase C, diacylglycerol and unidentified intracellular messengers, in The Neutrophil: Cellular Biochemistry and Physiology (M. B. Hallett ed.), pp. 219–242, CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Cooper, J. A., 1987, Effects of cytochalasin and phalloidin on actin, J. Cell Biol. 105:1473–1478

    PubMed  CAS  Google Scholar 

  • Cox, J. A., Jeng, A. J., Sharkey, N. A., Blumberg, J. M., and Tauber, A. I., 1986, Activation of human neutrophil NAPH-oxidase by protein kinase C, J. Clin. Invest. 76:1932–1939

    Google Scholar 

  • Crawford, D. R., and Schneider, D. L., 1982, Identification of ubiquinone-50 in human neutrophils and its role in microbicidal events, J. Biol. Chem. 257:6662–6668

    PubMed  CAS  Google Scholar 

  • Cross, A. R., and Jones, O. T. G., 1986, The effect of the inhibitor diphenylene iodonium on the superoxide generating system of neutrophils, Biochem J. 237:111–116

    PubMed  CAS  Google Scholar 

  • Cross, A. R., Jones, O. T. G., Harper, A. M., and Segal, A. W., 1981, Oxidation-reduction properties of the cytochrome b found in the plasma-membrane fraction of human neutrophils. A possible oxidase in the respiratory burst, Biochem. J. 194:599–606

    PubMed  CAS  Google Scholar 

  • Cross, A. R., Jones, O. T. G., Garcia, R., and Segal, A. W., 1982, The association of FAD with the cytochrome b-245 of human neutrophils, Biochem. J. 208:759–763

    PubMed  CAS  Google Scholar 

  • Cross, A. R., Jones, O. T. G., Garcia, R. C., and Segal, A. W., 1983, The subcellular localization of ubiquinone in human neutrophils, Biochem. J. 216:765–768

    PubMed  CAS  Google Scholar 

  • Cross, A. R., Parkinson, J. F., and Jones, O. T. G., 1984, The superoxide generating oxidase of leukocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilised preparations, Biochem. J. 223:337–344

    PubMed  CAS  Google Scholar 

  • Cross, A. R., Parkinson, J. F., and Jones, O. T. G., 1985, Mechanism of the superoxide-producing oxidase of neutrophils; oxygen is necessary for fast reduction of cytochrome b-245, Biochem. J. 226:881–884

    PubMed  CAS  Google Scholar 

  • Dale, M. M., and Penfield, A., 1987, Comparison of the effect of indomethacin, RHC80267 and R59022 on superoxide production by 1,oleoyl-2, acetyl glycerol and A23187 in human neutrophils, Br. J. Pharmacol. 92:63–68

    PubMed  CAS  Google Scholar 

  • de Chaffoy De Courcelles, D., Roevens, P., and Van Belle, H., 1985, R59022, a diacylglycerol kinase inhibitor; its effect on diacylglycerol and thrombin-induced c-kinase activation in intact platelets, J. Biol. Chem. 260:15762–15770

    PubMed  Google Scholar 

  • DeChatelet, L. R., Shirley, P. S., and Johnson, R. B.,Jr., 1976, Effect of phorbol myristate acetate on the oxidative metabolism of human polymorphonuclear leukocytes, Blood 47:545–554

    PubMed  CAS  Google Scholar 

  • Della Bianca, V., Grzeskowiak, M., Castella, M., Zeni, L., and Rossi, F., 1986, PMA potentiates the respiratory burst while it inhibits phosphoinositide hydrolysis and calcium metabolism by Fmlp in human neutrophils, Biochem. Biophys. Res. Commun. 135:556–565

    PubMed  CAS  Google Scholar 

  • Dickey, B. F., Pyun, H. Y., Williamson, K. C., and Navarro, J., 1987, Identification and purification of a novel G protein from neutrophils, FEBS. Leu. 219:289–292

    CAS  Google Scholar 

  • Dinubile, M. T., and Southwick, F. S., 1985, Effect of macrophage profilin on actin in the presence and absence of acumentin and gelsolin, J. Biol. Chem. 260:7402–7409

    PubMed  CAS  Google Scholar 

  • DiVirgilio, F., Lew, D. P., and Pozzan, T., 1984, Protein kinase activation of physiological processes in human neutrophil at vanishingly small cytosolic Ca2+ levels, Nature, (London) 310:691–693

    CAS  Google Scholar 

  • DiVirgilio, F., Vicentini, L.M., Treves, S., Riz, G., and Pozzan, T., 1985, Inositol phosphate formation in fmet-leu-phe stimulated human neutrophils does not require an increase in the cytosolic free Ca2+ concentration, Biochem. J. 229:361

    CAS  Google Scholar 

  • DiVirgilio, F., Meyer, B. C., Greenberg, S., and Silverstein, S. C., 1988, Fc-receptor mediated phagocytosis occur in macrophages at exceedingly low cytosolic Ca2+ levels, J. Cell Biol. 106:657–666

    CAS  Google Scholar 

  • Donabedian, H., and Gallin, J. F., 1981, Deactivation of human neutrophil chemotaxis by chemoattractants: Effect on receptors for the chemotactic factor f-met-leu-phe, J. Immunol. 127:839–844

    PubMed  CAS  Google Scholar 

  • Edelson, P. J., and Fudenburg, H. F., 1973, Effect of vinblastin on chemotactic responsiveness of normal human neutrophils, Infect. Immun. 8:127–129

    PubMed  CAS  Google Scholar 

  • Eisbach, P. and Farrow, S., 1969, Cellular triglyceride as a source of fatty acid for lecithin synthesis during phagocytosis, Biochim. Biophys. Acta 176:438–442

    Google Scholar 

  • Eisbach, P., Patriarca, P., Pettis, P., Stossel, T. P., Mason, R. J. and Vaughan, M., 1972, The appearance of lecithin 32P, synthesis from bysolecithin 32P, in phagosomes of polymorphonuclear leukocytes, J. Clin. Invest, 51:1910–1919

    Google Scholar 

  • Elzinga, M., Maron, B. J., and Adelstein, R. S. 1976, Human heart and platelet actins are products of different genes, Science 191:94–95

    PubMed  CAS  Google Scholar 

  • English, D., Roloff, J. S., and DuKens, J. N., 1981, Regulation of human polymorphonuclear leukocyte superoxide release by cellular responses to chemotactic peptides, J. Immunol. 126:165–171

    PubMed  CAS  Google Scholar 

  • Gabig, T. G., and Lefker, B. A., 1984, Catalytic properties of the resolved flavoprotein and cytochrome b components of the NADPH dependent O2-generating oxidase of human neutrophils. Biochem. Biophys. Res. Commun. 118:430–436

    PubMed  CAS  Google Scholar 

  • Gallin, E. K., and McKinney, L. C., 1989, Ion transport in phagocytes, in The Neutrophil: Cellular Biochemistry and Physiology (M. B. Hallett, ed.), pp. 243–260, CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Gallin, J. I., and Rosenthal, A. S., 1974, The regulatory role of divalent cations in human granulocyte chemotaxis. Evidence for an association between calcium exchanges and microtubule assembly, J. Cell Biol. 62:594–609

    PubMed  CAS  Google Scholar 

  • Gallin, J. I., Durocher, J. R., and Kaplan, A. P., 1975, Interaction of leukocyte chemotactic factors with the cell surface. I. Chemotactic factor-induced changes in human granulocyte surface change, Clin. Invest. 55:967–974

    CAS  Google Scholar 

  • Garcia, R. C., and Segal, A. W., 1984, Changes in the subcellular distribution of the cytochrome b-245 on stimulated human neutrophils, Biochem. J. 219:233–242

    PubMed  CAS  Google Scholar 

  • Geiger, B., 1979, A 130 K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells, Cell 18:193–205

    PubMed  CAS  Google Scholar 

  • Gennaro, R., Florio, C., and Romeo, D., 1985, Activation of protein kinase C in neutrophil cytoplasts. Localization of protein substrates and possible relationship with stimulus-response coupling, F.E.B.S. Lett 180:185–189

    CAS  Google Scholar 

  • Goldman, D. W., Chang, F. H., Gifford, L. A., Goetzl, E. J., and Bourne, H. R., 1985, Pertussis toxin inhibition of chemotactic factor-induced calcium mobilization and function in human polymorphonuclear leukocytes, J. Exp. Med. 162:145–156

    PubMed  CAS  Google Scholar 

  • Goldstein, I., Hoffstein, S., Gallin, J. I., and Wiessmann, G., 1973, Mechanisms of lysosomal enzyme release from human leukocytes: Microtubule assembly and membrane fusion induced by a component of complement, Proc. Natl. Acad. Sci. USA 70:2916–2920

    PubMed  CAS  Google Scholar 

  • Gordon, B. J., and Weinberg, J. B., 1982, Receptor-mediated modulation of human monocyte, neutrophil, lymphocyte and platelet function by phorbol diesters, J. Clin. Invest. 70:699–707

    Google Scholar 

  • Griffin, F. M., 1977, Opsonization, in Biological Amplification Systems in Immunobiology, (N. K. Day, and R. A. Good, eds.), pp. 85–114, Plenum Press, New York

    Google Scholar 

  • Gruler, H., 1984, Physical basis for defining terms used to describe cell movement phenomena, Blood Cells 10:123–131

    PubMed  CAS  Google Scholar 

  • Gruler, H., 1989, Biophysics of leukocytes; neutrophil chemotaxis, characteristics and mechanisms, in The Neutrophil: Cellular Biochemistry and Physiology (M. B. Hallett, ed.), pp. 63–96, CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Grzeskowiak, M., Della Bianca, V., Cassatella, M. A., and Rossi, F., 1986, Complete dissociation between the activation of phosphoinositide turnover and NADPH oxidase by Fmlp in human neutrophils depleted of Ca2+ and primed with sub-threshold doses of PMA, Biochem. Biophys. Res. Commun. 135:785–794

    PubMed  CAS  Google Scholar 

  • Hallett, M. B., and Campbell, A. K., 1982a, Measurement of changes in cytoplasmic free calcium in fused cell hybrids, Nature (London) 295:155–158

    CAS  Google Scholar 

  • Hallett, M. B., and Campbell, A. K., 1982b, Applications of coelenterater luminescent proteins, In Clinical and Biochemical Luminescience. Clinical and Biochemical analysis, Vol. 12, (L. J. Kricka and T. J. N. Carter, eds.), pp. 89–133, Marcel Dekker, Inc., New York

    Google Scholar 

  • Hallett, M. B., and Campbell, A. K., 1983, Two distinct mechanisms for stimulation of oxygen-radical production by polymorphonuclear leucocytes, Biochem. J. 216:459–465

    PubMed  CAS  Google Scholar 

  • Hallett, M. B., and Campbell, A. K., 1984a, Is intracellular Ca2+ the trigger for oxygen radical production by polymorphonuclear leucocytes?, Cell Calcium 5:1–19

    CAS  Google Scholar 

  • Hallett, M. B., and Campbell, A. K., 1984b, Direct measurement of intracellular free Ca2+ in rat peritoneal macrophages; correlation with oxygen radical production. Immunology 50:487–495

    Google Scholar 

  • Hallett, M. B., Dormer, R. L., and Campbell, A. K., 1990, Cytoplasmic free calcium; measurement and manipulation in small living cells, in Peptide Hormones: A Practical Approach (K. Siddle and J. C. Hutton, ed.), (in press), IRL Press, Cambridge.

    Google Scholar 

  • Hallett, M. B., Edwards, S. W., and Campbell, A. K., 1987, Control of oxygen radical production by polymorphonuclear leukocytes monitored by luminol-dependent chemiluminescence: the roles of intracellular Ca2+, oxygen concentration and redox components. Cellular Chemiluminescence Vol I (K. Van-Dyke, ed.). pp. 173–192, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Harper, A. M., Chaplin, M. F., and Segal, A. W., 1985, Cytochrome b-245 from human neutrophils is a glycoprotein, Biochem. J. 227:783–788

    PubMed  CAS  Google Scholar 

  • Harish, O. E., Levy, R., Rosenheck, K., and Oplatka, A., 1984, Possible involvement of actin and myosin in Ca2+ transport through the plasma membrane of chromaffin cells, Biochem. Biophys. Res. Commun. 119:652–655

    PubMed  CAS  Google Scholar 

  • Hartwig, J. H., and Stossel, T. P., 1975, Isolation and properties of actin, myosin and a new actin-binding protein in rabbit alveolar macrophages, J. Biol. Chem. 250:5696–5705

    PubMed  CAS  Google Scholar 

  • Hartwig, J. H., and Stossel, T. P., 1987, Structure of macrophage actin-binding protein in solution and with actin-filaments, J. Mol. Biol. 145:563–581

    Google Scholar 

  • Hartwig, J. H., Chambers, K. A., and Stossel, T. P., 1989, Association of gelsolin with actin filaments and cell membranes of macrophages and platelets, J. Cell Biol. 106:805–812

    Google Scholar 

  • Hattori, H., 1961, Studies on the labile, stable NADH oxidase and peroxidase staining reaction in the isolated particles of horse granulocyte, Nagoya J. Med. Sci. 23:362–378

    PubMed  CAS  Google Scholar 

  • Hayakawa, T., Suzuki, K., Suzuki, S., Andrews, P. C., and Babior, B. M., 1986, A possible role for protein phosphorylation in the activation of the respiratory burst in human neutrophils. Evidence from studies with cells from patients with chronic granulomatous disease, J. Biol. Chem. 261:9101–9114

    Google Scholar 

  • Heath, J. P., 1981, Arcs: Curved microfilament bundles beneath the sorsal surface of the leading lamellae of moving chick embryo fibroblasts, Cell Biol. Int. Rep. 5:975–980

    PubMed  CAS  Google Scholar 

  • Heilbrunn, L. V., 1956, The Dynamics of Living Protoplasm, Academic Press, New York

    Google Scholar 

  • Heizmann, C. W., and Hauptle, M. T., 1977, The purification, characterization and localization of a parvalbumin-like protein from chicken leg muscle, Cur. J. Biochem. 80:443–457

    CAS  Google Scholar 

  • Helfman, D. M., Appelbaum, B. D., Vogler, N. R., and Kuo, J. F., 1983a, Phospholipid-sensitive calcium-dependent protein kinase and its substrates in human neutrophils, Biochem. Biophys. Res. Commun. 111:847–852

    CAS  Google Scholar 

  • Helfman, D. M., Barnes, K. C., Kinade, J. M., Vogler, W. R., Shoji, M., and Kuo, F. F., 1983b, Phospholipidsensitive and Ca2+-dependent protein phosphorylating system in various types of leukemic cells from patients and from leukemic cell-line HL60 and K562, Cancer Res. 43:2955–2962

    CAS  Google Scholar 

  • Henderson, L., Chappell, J. B., and Jones, O. T. P., 1987, The superoxide-generating NADPH oxidase is electrogenic and associated with an H+ channel, Biochem. J. 246:325–329

    PubMed  CAS  Google Scholar 

  • Heyworth, P., and Segal, A. W., 1986, Further evidence for the involvement of the phosphoprotein in the respiratory burst oxidase of human neutrophils. Biochem. J. 239:723–727

    PubMed  CAS  Google Scholar 

  • Higson, F. K., and Jones, O. T. G., 1984, The generation of active oxygen species by stimulated rainbow trout leukocytes in whale blood, Comp. Biochem. Physiol. 77:583–587

    Google Scholar 

  • Hill, H. R., Estensen, R. D., Quie, P. G., Hogan, N. A., and Goldberg, N. D., 1975, Modulation of human neutrophil chemotosis responses by cAMP, Metabolism 24:447–452

    PubMed  CAS  Google Scholar 

  • Hirayama, T., and Kato, I., 1982, Two types of Ca2+-dependent phosphorylation in rabbit leukocytes, FEBS Lett. 146:209–213

    PubMed  CAS  Google Scholar 

  • Hoffstein, S., 1980, Intra and extracellular secretion from polymorphonuclear leukocytes in Handbook of Inflammation 2. The Cell Biology of Inflammation (G. Weissmann ed.), pp. 387–430, Elsevier/NorthHolland Biomedical Press, Amsterdam

    Google Scholar 

  • Hoffstein, S., and Weissmann, G., 1978, Microfilaments and microtubules in calcium ionophore-induced secretion of lysosomal enzymes from human polymorphonuclear leukocytes, J. Cell Biol. 78:769–781

    PubMed  CAS  Google Scholar 

  • Hoffstein, S., Zurier, R. B., and Weissmann, G., 1974, Mechanisms of lysomal enzyme release from human leucocytes. III. Quantitative morphologic evidence from an effect of cyclic nucleotides and colchicine on degranulation, Clin. Immunol. Immunopathol. 3:201–217

    PubMed  CAS  Google Scholar 

  • Hoffstein, S., Goldstein, I. M., and Weissmann, G., 1977, Role of microtubule assembly in lysosomal enzyme secretion from human polymorphonuclear leukocytes. A re-evaluation, J. Cell Biol. 73:242–256

    PubMed  CAS  Google Scholar 

  • Howard, T. H., and Oresajo, C. O., 1985a, A method for quantifying F-actin in chemotactic peptide activated neutrophils: Study of the effect of tBoc peptides, Cell Motil. 5:545–557

    CAS  Google Scholar 

  • Howard, T. H., and Oresajo, C. O., 1985b, The kinetics of chemotactic peptide-induced changes in f-actin content, f-actin distribution, and the shape of neutrophils, J. Cell Biol. 101:1078–1085

    CAS  Google Scholar 

  • Huang, C. K., and DeVanney, J. F, 1986, GTP γ-5 induced solubilization of actin and myosin from rabbit peritoneal neutrophil membrane, F.E.B.S. Lett. 202:41–44

    CAS  Google Scholar 

  • Ignarro, L. J., Lunt, T. F., and George, W. J., 1974, Hormonal control of lysosomal enzyme release from human neutrophils. Effect of autonomic agents on enzyme release, phagocytosis, and cyclic nucleotide levels, J. Exp. Med. 139:1395–1414

    PubMed  CAS  Google Scholar 

  • Irvine, R. F., and Moor, R. M., 1980, Microinjection of inositol 1,3,4,5 tetrakisphosphate activates sea urchin eggs by a mechanism that depends on external Ca2+, Biochem. J. 240:917–923

    Google Scholar 

  • Janmey, P. A., and Stossel, T. P., 1987, Modulation of gelsolin function by phosphortidylinositol 4,5-biphosphate, Nature (London) 325:362–364

    CAS  Google Scholar 

  • Janmey, P. A., Iida, K., Yin, H. L., and Stossel, T. P., 1987, Polyphosphoinositide micelles and polyphosphoinositide-containing vesicles dissociate endogenous gelsolin-actin complexes and promote actin assembly from the fast-growing end of actin filaments blocked by gelsolin, J. Biol. Chem. 262:12228–12236

    PubMed  CAS  Google Scholar 

  • Jones, H. P., Ghai, G., Petrone, W. F., and McCord, J. M., 1982, Calmodulin-dependent stimulation of the NADPH-oxidase in human neutrophils, Biochim. Biophys. Acta 714:152–159

    PubMed  CAS  Google Scholar 

  • Kakinuma, K., 1974, Effects of fatty acids on oxidative metabolism of leukocytes, Biochim. Biophys. Acta 348:76–87

    PubMed  CAS  Google Scholar 

  • Kimura, K., Saberada, K., and Katoh, N., 1985, Inhibition by gossypol of phospholipid-sensitive calcium-dependent protein kinase from pig testis, Biochim. Biophys. Acta 839:276–280

    PubMed  CAS  Google Scholar 

  • Klebanoff, S. J., and Clark, R. A., 1978, The Neutrophil: Function and Clinical Disorders, North-Holland Publishing Co., Amsterdam

    Google Scholar 

  • Korn, E. D., 1982, Actin polymerization and its regulation by proteins from nonmuscle cells, Physiol. Rev. 62:672–737

    PubMed  CAS  Google Scholar 

  • Korn, E. D., 1978, Biochemistry of actomyosin-dependent cell motility, Proc. Natl. Acad. Sci. USA 75:588–599

    PubMed  CAS  Google Scholar 

  • Korn, E. D., Bowers, B., Batzri, S., Simmons, S. R. R., and Victoria, E. J., 1974, Endocytosis and exocytosis: Role of microfilaments and involvement of phospholipids in membrane fusion, J. Supramol. Struct. 2:517–528

    PubMed  CAS  Google Scholar 

  • Korn, E. D., Carlier, M.-F., and Pantaloni, D., 1987, Actin polymerization and ATP hydrolysis, Science 238:638–644

    PubMed  CAS  Google Scholar 

  • Kurth, M. C., and Bryan, J., 1984, Platelet activation induces the formation of a stable gelsolin-actin complex from monomeric gelsolin, J. Biol. Chem. 259:7473–7379

    PubMed  CAS  Google Scholar 

  • Kwiatkowski, D. J., and Yin, H. L., 1987, Molecular biology of gelsolin: A calcium-regulated actin filament severing protein, Biorheology 24:643–647

    PubMed  CAS  Google Scholar 

  • Kwiatkowski, D. J., Janmey, P. A., Mole, J. E., and Yin, H. L., 1985, Isolation and properties of two actin-binding domains in gelsolin, J. Biol. Chem. 260:15232–15238

    PubMed  CAS  Google Scholar 

  • Lackie, J. M., 1986, Cell Movement and Cell Behavior, Allen & Unwin, London

    Google Scholar 

  • Lad, P. M., Glovsky, M. M., Smiley, P. A., Klempner, M., Reissinger, D. M., and Richards, J. M., 1984, The 3-adrenergic receptor in the human neutrophil plasma membrane; receptor cyclase coupling is associated with amplified GTP activation, J. Immunol. 132:1466–1471

    PubMed  CAS  Google Scholar 

  • Lad, P. M., Olson, C. V., and Grewal, I. S., 1986, A step sensitive to pertussis toxin and phorbol esters in neutrophils regulates chemotaxis and capping but not phagocytosis, FEBS Lett. 200:91–96

    PubMed  CAS  Google Scholar 

  • Lassing, I., and Lindberg, U., 1985, Specific interaction between phosphotidylinositol 4,5 biphosphate and profilactin, Nature (London) 314:472–474

    CAS  Google Scholar 

  • Lelkes, P. I., Friedman, J. E., Rosenheck, K., and Oplatka, A., 1986, Destabilization of the actin filaments as a requirement for the secretion of catecholamines from permeabilised chromaffin cells, FEBS Lett. 208:357–363

    PubMed  CAS  Google Scholar 

  • Levitz, S. M., Lyman, C. A., Murata, T., Sullivan, J. A., Mandell, G. L., and Diamond, R. D., 1987, Cytosolic calcium changes in individual neutrophils stimulated by opsonized and unopsonized Candida albicans hyphae, Infect. Immun. 55:2783–2788

    PubMed  CAS  Google Scholar 

  • Lew, P. D., Wollheim, C. B., Waldvogel, F. A., and Pozzan, T., 1984, Modulation of cytosolic free calcium transcience by changes in intracellular calcium buffering capacity: Correlation with cytosis and O production in human neutrophils, J. Cell Biol. 99:1212–1221

    PubMed  CAS  Google Scholar 

  • Lew, D. P., Andersson, T., Divirgilio, F., Pozzan, T., and Stendahl, O., 1985, Ca2+-dependent and Ca2+-independent phagocytosis in human neutrophils, Nature (London) 315:509–511

    CAS  Google Scholar 

  • Lew, D. P., Monod, A., Waldvogel, F. A., Dewald, B., Bagglioni, M., and Pozzan, T., 1986, Quantitative analysis of the cytosolic free calcium dependency of exocytosis from three subcellular components in intact human neutrophils, J. Cell Biol. 102:2197–2204

    PubMed  CAS  Google Scholar 

  • Lew, D. P., Monod, A., Waldvogel, F. A., and Pozzan, T., 1987, Role of cytosolic free calcium and phospholipase C in leukotriene B4 stimulated secretion in human neutrophils; comparison with the chemotactic peptide f-mlp, Eur. J. Biochem. 162:161–168

    PubMed  CAS  Google Scholar 

  • Light, D. R., Walsh, C., O’Callaghan, A. M., Goetzl, E. J., and Tauber, A. L., 1981, Characteristics of the cofactor requirements for the superoxide-generating NADPH oxidase of human polymorphonuclear leukocytes, Biochemistry 20:1468–1476

    PubMed  CAS  Google Scholar 

  • Luther, R., Van Zwieten, R., Weening, R. S., Hamers, M. N., and Roos, D., 1984, Cytochrome b, flavins and ubiquinone in enucleated human neutrophils, J. Biol. Chem. 259:9603–9606

    Google Scholar 

  • Maclean-Fletcher, S., and Pollard, T. D., 1980, Mechanism of action of cytochalasin B on actin, Cell 20:329–341

    PubMed  CAS  Google Scholar 

  • Majerus, P. W., Connolly, T. M., Deckmyn, H., Ross, T. S., Bross, T. E., Malawista, S. E., 1971, Vinblastin; colchicine-like effects on human blood leukocytes during phagocytosis, Blood 37:519–529

    Google Scholar 

  • Malawista, S. E., and Bensch, K. G., 1967, Human polymorphonuclear leukocyes; demonstration of micro-tubules and the effect of colchicine, Science 15:521–522

    Google Scholar 

  • Malawista, S. E., and Bodel, P. T., 1967, The dissociation by colchicine of phagocytosis from increased oxygen consumption in human leukocytes, J. Clin. Invest. 46:786–796

    PubMed  CAS  Google Scholar 

  • Malawista, S. E., and Chevance, A. D. B., 1982, The cytokineplast: Purified, stable and functional motile machinery from human blood polymorphonuclear leukocytes. Possible formative role of heat-induced centrasomal dysfunction, Cell Biol. 95:960–973

    CAS  Google Scholar 

  • Maruyama, K. B., 1971, A study of 3-actinin, microfibrillar protein from rabbit skeletal muscle, J. Biochem. 69:369–386

    PubMed  CAS  Google Scholar 

  • Mazzei, G. J., Katoh, N., and Kuo, J. F., 1982, Polymixin B is a more selective inhibitor for phospholipidsensitive calcium-dependent protein kinase than for calmodulin-dependent kinase, Biochem. Biophys. Res. Commun. 109:1129–1133

    PubMed  CAS  Google Scholar 

  • McNeil, P. L., Swanson, J. A., Wright, J. D., Silverstein, S. C., and Taylor, D. L., 1986, Fc-mediated phagocytosis occurs in macrophages without an increase in average Ca2+, J. Cell Biol. 102:1586–1592

    PubMed  CAS  Google Scholar 

  • McPhail, L. C., Clayton, C. C., and Snyderman, R., 1984a, The NADPH oxidase of human poly-morphonuclear leukocytes: Evidence for multiple signals, J. Biol. Chem. 259:5768–5775

    CAS  Google Scholar 

  • McPhail, L. C., Clayton, C., and Snyderman, R., 1984b, A potential second messenger role for unsaturated fatty acids: Activation of Ca2+-dependent protein kinase, Science 224:622–625

    CAS  Google Scholar 

  • McRobbie, S. J., and Newell, P. C., 1984, A new model for chemotactic signal transduction in Dictyotelium discoideum, Biochem. Biophys. Res. Comm. 123:1076–1083

    PubMed  CAS  Google Scholar 

  • Melloni, E., Pontremoli, S., Michetti, M., Sacco, O., Sparatore B., Miyake, R., Tanaka, Y., Tsuda, T., Kaibuchi, K., Kikkkawa, U., and Nishisuka, Y., 1984, Activation of protein kinase C by a non-phorbol tumor promotor mezerein, Biochem. Biophys. Res. Commun. 121:648–656

    Google Scholar 

  • Melloni, E., Pontremoli, S., Michetti, M., Sacco, O., Sparatore, B., and Horecker, B. L., 1986, The involvement of calpain in the activation of protein kinase C in neutrophils stimulated with phorbol myristate acetate, J. Biol. Chem. 261:4101–4105

    PubMed  CAS  Google Scholar 

  • Molski, T. F. P., Naccache, P. H., Volpi, M., Wolpert, L., and Sha’afi, R. I., 1980, Specific modulation of the intracellular pH of rabbit neutrophils by chemotactic factor, Biochem. Biophys. Res. Commun. 94:508–514

    PubMed  CAS  Google Scholar 

  • Mookerjee, B. K., Cuppoletti, J., Rampal, A. L., and Jung, C. Y., 1981, The effects of cytochalasins on lymphocytes. Identification of distinct cytochalasin-binding sites in relation to mitogenic response and hexose transport, J. Biol. Chem. 256:1290–1300

    PubMed  CAS  Google Scholar 

  • Muid, R. E., Penfield, A., and Dale, M. M., 1987, The diacylglycerol kinase inhibitor R59022, enhances the superoxide generation from human neutrophils induced by stimulation of the fmlp, IgG and C3b receptors, Biochem. Biophys. Res. Commun. 143:630–637

    PubMed  CAS  Google Scholar 

  • Murata, T., Sullivan, J. A., Sawyer, D. W., and Mandell, G. L., 1987, Influence of type and opsonization of ingested particles on intracellular free calcium distribution of superoxide production by human neutrophils, Infect. Immun. 55:1784–1791

    PubMed  CAS  Google Scholar 

  • Naccache, P. H., Showell, H. J., Becker, E. L., and Sha’afi, R. I., 1977, Transport of sodium, potassium and calcium across rabbit polymorphonuclear leukocyte membranes. Effect of chemotactic factor, J. Cell Biol. 73:428–444

    PubMed  CAS  Google Scholar 

  • Naccache, P. H., Molski, T. F. P., Becker, E. L., Showell, H. J., and Sha’afi, R. I., 1980, Calmodulin inhibitors block neutrophil degranulation at a step distal from the mobilization of calcium, Biochem. Biophys. Res. Commun. 97:62–68

    PubMed  CAS  Google Scholar 

  • Naccache, P. H., Molski, T. F. P., and Sha’afi, R. I., 1985, Polymixin B inhibits PMA but not chemotactic peptide induced effects in rabbit neutrophils, FEBS Leu. 193:227–232

    CAS  Google Scholar 

  • Naccache, P. H., Sha’afi, R. I., and Borgeat, P., 1989, Mobilization, metabolism, and biological effects of eicosanoids in polymorphonuclear leukocytes, in The Neutrophil: Cellular Biochemistry and Physiology (M. B. Hallett, ed.) pp. 113–140, CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Nelson, R. D., Fiegel, V. D., Herron, M. J., and Simmons, R. C., 1980, Chemotactic deactivation of human neutrophils: Relationship of loss of cytotoxin receptor function and temporal nature of phenomenon, J. Reticuloendothel. Soc. 28:285–294

    PubMed  CAS  Google Scholar 

  • Niedel, J. E., Kahane, I., and Cuatrecassas, P., 1979, Receptor-mediated internalisation of fluorescent chemotactic peptide by human neutrophils, Science 205:1412

    PubMed  CAS  Google Scholar 

  • Niedel, J. E., Kuhn, L. J. T., and Vanderbark, G. R., 1983, Phorbol diester receptor copurifies with protein kinase C, Proc. Natl. Acad. Sci. USA 80:34–40

    Google Scholar 

  • Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumor promotion, Nature (London) 308:693–698

    CAS  Google Scholar 

  • Norgauer, J., Kownatzki, E., Seifert, R., and Aktories, K., 1988, Botulinum C2 toxin ADP-ribosylates actin and enhances O -2 production and secretion but inhibits migration of activated human neutrophils, J. Clin. Invest. 82:1376–1382

    PubMed  CAS  Google Scholar 

  • O’Brian, C. A., Liskamp, R. M., Solomon, D. H., and Weinstein, I. B., 1985, Inhibition of protein kinase C by tamoxifen, Cancer Res. 45:2469–2475

    Google Scholar 

  • Ohta, H., Takahashi, H., Hattori, H., Yamada, H. and Takikawa, K., 1966, Some oxidative enzymes andcytochrome in the specific granules of neutrophil leukocytes, Acta Haematol. Jpn. 29:799–808

    Google Scholar 

  • Ohta, Y., Akiyama, T., Nishida, E., and Sakai, H., 1987, Protein kinase C and cyclic AMP-dependent kinase induces opposite effects on cation polymerizability, FEBS Lett. 222:305–310

    PubMed  CAS  Google Scholar 

  • Okajima, F., and Ui, M., 1984, ADP-ribosylation of the specific membrane by islet-activating factor, pertussis toxin, associated with inhibition of chemotactic peptide-induced arachidonate release in neutrophils, J. Biol. Chem. 259:13863–13871

    PubMed  CAS  Google Scholar 

  • Oliver, J. M., 1976, Impaired microtubule function correctable by cyclic GMP and cholinergic agonists in Chediak-Higashi syndrome, Am. J. Pathol. 85:395–418

    PubMed  CAS  Google Scholar 

  • Oliver, J. M., Zurier, R. B., and Berlin, R. D., 1973, Concanavalin A cap formation on polymorphonuclear leukocytes of normal and Beige (Chediak-Higashi) mice, Nature, (London) 253:471–473

    Google Scholar 

  • Painter, R. G., Sklar, L. A., Tesaitis, A. J., Schmitt, M., and Cochrane, C. G., 1984, Activation of neutrophils by N-formyl chemotactic peptides, Fed. Proc. 43:2737–2742

    PubMed  CAS  Google Scholar 

  • Papini, E., Grzeskowiak, M., Bellavite, P., and Rossi, F., 1985, Protein kinase C phosphorylates a component of NADPH oxidase of neutrophils, FEBS Lett. 190:204–208

    PubMed  CAS  Google Scholar 

  • Parker, C. W., Creene, W. C., and MacDonald, H. H., 1976, Cytochalasin binding in lymphocytes and polymorphonuclear leukocytes, Exp. Cell Res. 103:99–108

    PubMed  CAS  Google Scholar 

  • Parkos, C. A., Dinauer, M. C., Walker, L. E., Allen, R. A., Jesaitis, A. J., and Orkin, S. H., 1988, Primary structure and unique expression of the 22-kilodalton, light chain of human neutrophil cytochrome b, Proc. Natl. Acad. Sci. USA 85:3319–3323

    PubMed  CAS  Google Scholar 

  • Parysek, L. M., and Eckert, B. S., 1984, Vimentin filaments in spreading, randomly locomoting, and f-met-leuphe-treated neutrophils, Cell Tissue Res. 235:575–581

    PubMed  CAS  Google Scholar 

  • Patriarca, P., Cramer, R., Dri, P., Sorcenzo, M. R., and Rossi, F., 1973, Biochemical studies on the effect of papaverine on polymorphonuclear leukocytes, Biochem. Pharmacol. 22:3257–3266

    PubMed  CAS  Google Scholar 

  • Pevin, D., Langley, O.K., and Amis, D. 1987, Anti-a-fodrin inhibits secretion from permeabilized chromaffin cells, Nature 376:498–507

    Google Scholar 

  • Pittet, D., Krause, K. H., Wollheim, C. B., Bruzzone, R. and Lew, D. P., 1987, Non-selective inhibition of neutrophil functioning by sphinganine, J. Biol. Chem. 262:10072–10076

    PubMed  CAS  Google Scholar 

  • Pollard, T. D., and Cooper, J. A., 1986, Actin and actin binding proteins. A critical evaluation of mechanisms and functions, Annu. Rev. Biochem. 55:987–1035

    PubMed  CAS  Google Scholar 

  • Pollard, T. D., and Weihing, R. R., 1974, Actin and myosin and cell movement, Crit. Rev. Biochem. 2:1–65

    CAS  Google Scholar 

  • Pontremoli, S., Melloni, E., Salamino, F., Sparatore, B., Michetti, M., Sacco, O., and Horecker, B. L., 1986, Phosphorylation of proteins in human neutrophils activated with phorbol myristate acetate or with chem- otactic factor, Arch. Biochem. Biophys. 250:23–29

    PubMed  CAS  Google Scholar 

  • Pontremoli, S., Melloni, E., Michetti, M., Salamino, F., Sparatore, B., and Horecker, B. L., 1988, An endogenous activator of Ca2+ dependent proteinase of human neutrophils that increases its affinity for Ca2+, Proc. Natl. Acad. Sci. USA 85:1749–1743

    Google Scholar 

  • Porter, K. R., 1984, The cytomatrix: A short history of its study, J. Cell Biol. 99:35–125

    Google Scholar 

  • Pozzan, T., Lew, D. P., Wollheim, C. B., and Tsien, R. Y., 1983, Is cytosolic calcium the trigger for neutrophil activation?, Science 221:1413–1415

    PubMed  CAS  Google Scholar 

  • Prentki, M., Wollheim, C. B., and Lew, D. P., 1984, Ca2+ homeostasis in permeabilized human neutrophils: Characterization of Ca2+ sequestering pools and the action of inositol 1,4,5 triphosphate, J. Biol. Chem. 259:13777–13782

    PubMed  CAS  Google Scholar 

  • Pryzwansky, K. B., 1987, Human leukocytes as viewed by stereo high-voltage electronmicroscopy, Blood Cells 12:505–530

    PubMed  CAS  Google Scholar 

  • Pryzwansky, K. B., Steiner, A. L., Spitznagel, J. K., and Kapoor, C. L., 1981, Compartmentation of cyclic AMP during phagocytosis by human neutrophilic granulocytes, Science 211:407

    PubMed  CAS  Google Scholar 

  • Pryzwanksky, K. B., Schliwa, M., and Porter, K. R., 1983, Comparison of the three-dimensional organisation of unextracted and triton-extracted human neutrophilic polymorphonuclear leukocytes, Eur. J. Cell Biol. 30:112–125

    Google Scholar 

  • Ramsey, W. S., and Harris, A., 1973, Leucocyte locomotion and its inhibition by antimitic drugs, Exp. Cell Res. 82:262–270

    PubMed  CAS  Google Scholar 

  • Rickard, J. E., and Sheterline, P. E., 1985, Evidence that phorbol ester interfers with stimulated Ca2+ redistribution by activating Ca2+ efflux in neutrophil leucocytes, Biochem J. 231:632–628

    Google Scholar 

  • Rivkin, I., Rosenblatt, J., and Becker, E. L., 1975, The role of cAMP in the chemotactic responsiveness and spontaneous motility of rabbit peritoneal neutrophils. The inhibition of neutrophil movement and the elevation of cAMP levels by catecholamines, prostaglandins, theophylline and cholera toxin, J. Immunol. 115:1114–1134

    Google Scholar 

  • Romeo, D., Zabucchi, G., Miani, N., and Rossi, F., 1975, Ion movement across leukocyte plasma membrane and excitation of their metabolism, Nature (London) 253:542–544

    CAS  Google Scholar 

  • Rossi, F., 1986, The O -2 -forming NADPH oxidase of the phagocytes: Mechanisms of activation and function, Biochim. Biophys. Acta 53:65–89

    Google Scholar 

  • Rossi, F., Grzeskowiak, M., and Della Bianca, V., 1986, Double stimulation with Fmlp and con A restores the activation of the respiratory burst but not of the phosphoinositide turnover in Ca2+-depleted human neutrophils: A further example of dissociation between stimulation of the NADPH oxidase and phosphoinositide turnover, Biochem. Biophys. Res. Commun. 140:1–11

    PubMed  CAS  Google Scholar 

  • Royer-Pokora, B., Kunkel, L. M., and Monaco, A. P., 1986, Cloning the gene for an inherited human disorder—chronic granulomatous disease—on the basis of chromosomal location, Nature (London) 322:32–38

    CAS  Google Scholar 

  • Rydgren, L., Simmingskold, G., Bandmann, U., and Narberg, B., 1976, The role of cytoplasmic microtubules in polymorphonuclear leucocyte chemotaxis. Evidence for the release hypothesis by means of time-lapse analysis of PMN movement relative to dot-like attractants, Exp. Cell Res. 99:207–220

    PubMed  CAS  Google Scholar 

  • Salamino, F., and Horecker, B. L., 1985, Binding of protein kinase C to neutrophil membranes in the presence of Ca and its activation by a Ca2+-requiring proteinase, Proc. Natl. Acad. Sci. USA 82:6435–6439

    PubMed  Google Scholar 

  • Sasada, M., Dabst, M. J., and Johnston, R. B., 1983, Activation of mouse peritoneal macrophages by lipopolysaccharide alters the Kinches parameters of the superoxide producing NADPH-oxidase, J. Biol. Chem. 258:9631–9635

    PubMed  CAS  Google Scholar 

  • Sawyer, D. W., Sullivan, J. A., and Mandell, G. L., 1985, Intracellular free calcium localised in neutrophils during phagocytosis, Science 230:663–666

    PubMed  CAS  Google Scholar 

  • Schell-Frederick, E., 1974, Stimulation of the oxidative metabolism of polymorphonuclear leukocytes by the calcium ionophore A23187, FEBS Lett. 48:37–40

    PubMed  CAS  Google Scholar 

  • Schell-Frederick, E., 1984, A comparison of the effects of soluble stimuli on free cytoplasmic and membrane bound calcium in human neutrophils, Cell Calcium 5:237–251

    PubMed  CAS  Google Scholar 

  • Schiffmann, E., Corcoran, B. A., and Wahl, S. M., 1975, N-formyl-methionyl peptides as chemoattractants for leukocytes. Proc. Natl. Acad. Sci. USA 782:1059–1064

    Google Scholar 

  • Scholey, J. M., Taylor, K. A., and Kendrick-Jones, J., 1980, Regulation of non-muscle myosin assembly by calmodulin-dependent light chain kinase, Nature (London) 287:233–235

    CAS  Google Scholar 

  • Schook, W., Ones, C., and Puzzkin, S., 1978, Isolation and properties of a-Actinin, Biochem. J. 175:63–72

    PubMed  CAS  Google Scholar 

  • Segal, A. W., 1988, The molecular and cellular pathology of chronic granulomatous disease, Eur. J. Clin. Invest. 18:433–443

    PubMed  CAS  Google Scholar 

  • Segal, A. W., and Jones, O. T. G., 1978, Novel cytochrome b system in phagocytic vacuoles from human granulocytes, Nature (London) 276:515–517

    CAS  Google Scholar 

  • Segal, A. W., and Jones, O. T. G., 1979, The subcellular distribution and some properties of the cytochrome b component of the microbicidal oxidase system of human neutrophils, Biochem J. 182:181–188

    PubMed  CAS  Google Scholar 

  • Segal, A. W., Heyworth, P. G., Cockroft, S., and Barrowman, M. M., 1985, Stimulated neutrophils from patients with autosomal recessive chronic granulomatous disease fail to phosphorylate a Mr 44,000 protein, Nature (London) 316:547–549

    CAS  Google Scholar 

  • Seligmann, B. E., Fletcher, M. P., and Gallin, J. P.,1982, Adaption of human neutrophil responsiveness to the chemoattractant N-formyl-methionyl-leucyl-phenylalanine, J. Biol. Chem. 257:6280–6286

    PubMed  CAS  Google Scholar 

  • Sha’afi, R. I., and Molski, T. F. P., 1987, Signalling for increased cytoskeletal actin in neutrophils, Biochem. Biophys. Res. Commun. 145:934–941

    PubMed  Google Scholar 

  • Sha’afi, R. I., White, J. R., Molski, T. F. P., Schefcyk, J., Volpi, M., Naccache, P. H., and Feinstein, M. B., 1983, Phorbol-12-myristate 13-acetate activates rabbit neutrophils without an apparent rise in the level of intracellular free calcium, Biophys. Biochem. Res. Commun. 114:638–645

    Google Scholar 

  • Sha’afi, R. I., Molski, T. F. P., Huang, C.-K., and Naccache, P. H.,1986a, The inhibition of neutrophil responsiveness caused by phorbol esters is blocked by the protein kinase inhibitor H7, Biochem. Biophys. Res. Commun. 137:50–60

    Google Scholar 

  • Sha’afi, R. I., Shetcyk, J., Yassin, R., Molski, T. F. P., Volpi, M., Naccache, P. H., White, J. R., Feinstein, M. B., and Becker, E. C., 1986b, Is a rise in intracellular concentration of free calcium necessary or sufficient for stimulated cytoskeletal-associated actin?, J. Cell Biol. 102:1459–1463

    Google Scholar 

  • Sherline, P., and Mundy, G. R., 1977, Role of the tubulin microtubule system in lymphocye activation, J. Cell Biol. 74:371–376

    PubMed  CAS  Google Scholar 

  • Sheterline, P., 1983, Mechanisms of Cell Motility, Molecular Aspects of contractility,Academic Press, New York

    Google Scholar 

  • Sheterline, P., and Rickard, J. E., 1989, The cortical actin network of neutrophilic leukocytes during phagocytosis and chemotaxis, in The Neutrophil: Cellular Biochemistry and Physiology (M.B. Hallett, ed.), pp. 141–166, CRC Press, Boca Raton, Fla.

    Google Scholar 

  • Sheterline, P., Rickard, J. E., Boothroyd, B., and Richards, R. C., 1986, Phorbol ester induces rapid actin assembly in neutrophil leucocytes independently of change in Ca2+ and pH, J. Muscle Res. Cell Motil. 7:405–416

    PubMed  CAS  Google Scholar 

  • Sheterline, P., Rickard, J. E., and Richards, R. C., 1984a, Fc receptor-directed phagocytic stimuli induce transient actin assembly at an early stage of phagocytosis in neutrophil leukocytes, Eur. J. Cell Biol. 34:80–87

    CAS  Google Scholar 

  • Sheterline, P., Rickard, J. E., and Richards, R. C., 1984b, Involvement of cortical actin network of neutrophilic leukocytes during phagocytosis, Biochem. Soc. Trans. 12:983–987

    CAS  Google Scholar 

  • Shinagawa, Y., Shinagawa, Y., Tanaka, C., and Teraoka, A., 1966, Electron microscopic and biochemical study of the neutrophilic granules from leukocytes, J. Electron Microsc. 15:81–85

    CAS  Google Scholar 

  • Smith, C. D., Lane, B. C., Kusaka, I., Verghese, M. W., and Snyderman, R., 1985, Chemoattractant receptor-induced hydrolysis of phosphoinositol 4,5-biphosphate in human polymorphonuclear leukocyte membranes, J. Biol. Chem. 260:5875–5878

    PubMed  CAS  Google Scholar 

  • Smith, C. D., Cox, C. C., and Snyderman, R., 1986, Receptor-coupled activation of phosphoinositide-specific phospholipase C by N protein, Science 232:97–100

    PubMed  CAS  Google Scholar 

  • Smolen, J. E., and Stoehr, S. J., 1986, Guanine nucleotides reduce the free calcium requirement for granule of granule constituents from permeabilized human neutrophils, Biochem. Biophys. Acta 889:171–178

    PubMed  CAS  Google Scholar 

  • Snyderman, R., 1983, Chemoattractant receptor affinity reflects its ability to transduce different biological responses, in Leucocyte Locomotion and Chemotaxis (H. U. Keller, and G. O. Till, eds.), pp. 323–336, Birkhauser, Basel.

    Google Scholar 

  • Southwick, F. S., and Hartwig, J. H. 1982, Acumentin, a protein in macrophages which caps the ‘pointed’ end of actin filaments, Nature 297:303–307

    PubMed  CAS  Google Scholar 

  • Southwick, F. S., and Stossel, T. P., 1981, Isolation of an inhibitor of actin polymerization from human polymorphonuclear leukocytes, J. Biol. Chem. 256:3030–3036

    PubMed  CAS  Google Scholar 

  • Southwick, F. S., and Stossel, T. P., 1983, Contractile proteins in leukocye function, Semin. Hematol. 20:305–321

    PubMed  CAS  Google Scholar 

  • Southwick, F. S., 1985, Regulation of phagocyte movement, in Inflammation, Basic Mechanisms, Tissue Injuring Principles and Clinical Models (P. Venge and A. Lindbom, eds.), pp. 139–160, Almqvist and Wiksell International, Stockholm.

    Google Scholar 

  • Stendahl, O. I., Hartwig, J. H., Brotschi, E. A., and Stossel, T. P. 1980, Distribution of actin-binding protein and myosin in macrophages during spreading and phagocytosis, J. Cell Biol. 84:215–224

    PubMed  CAS  Google Scholar 

  • Stossel, T. P., Root, R. R., and Vaughn, M., 1972, Phagocytosis in chronic granulomatous disease and Chediak-Higashi syndrome, N. Engl. J. Med. 286:120–123

    PubMed  CAS  Google Scholar 

  • Su, H.-D., Mazzei, G. J., Vogler, W. R., and Kuo, J. F., 1985, Effect on tamoxifen, a nonsteroidal antiestrogen, on phospholipid/calcium dependent protein kinase and phosphorylation of its endogenous substrate protein from the rat brain and ovary, Biochem. Pharmacol. 34:3649–3653

    PubMed  CAS  Google Scholar 

  • Sullivan, S. J., and Zigmond, S. H., 1980, Chemotactic peptide receptor modulation in polymorphonuclear leukocytes, J. Cell Biol. 85:703–711

    PubMed  CAS  Google Scholar 

  • Taffet, S., Greenfield, A. R. L., and Haddox, M. K., 1983, Retinal inhibits TPA activated calcium-activated phospholipid-dependent protein kinase (“C kinase”), Biochem. Biophys. Res. Commun. 114:1194–1199

    PubMed  CAS  Google Scholar 

  • Taui, J.-S., and Stjernholm, R., 1975, Cytochalasin B: Effect on phospholipid metabolism and lysosomal enzyme release by leukocytes, Biochim. Biophys. Acta 392:1–12

    Google Scholar 

  • Tauber, A. I., Cox, J. A., Curnutte, J. T., Carrol, P. M., Nakakuma, H.,Warren, B., Gilbert, H., and Blumberg, P. M., 1989, Activation of human neutrophil NADPH-oxidase in vitro by the catalytic fragment of protein kinase-C, Biochem. Biophys. Res. Commun. 158:884–890

    PubMed  CAS  Google Scholar 

  • Treves, S. D., DiVirgilio, F., Vasselli, G. M., and Pozzan, T., 1987, Effects of cytochalasins on cytosolic free Ca2+ concentrations and phosphoinositide metabolism in leukocytes, Exp. Cell Res. 168:285–298

    PubMed  CAS  Google Scholar 

  • Valerius, N. H., Stendahl, O., Hartwig, J. H., and Stossel, T. P., 1987, Distribution of actin binding protein and myosin in polymorphonuclear leukocytes during locomotion and phagocytosis, J. Cell, Biol. 68:195–202

    Google Scholar 

  • Varani, J., Wass, J. A., and Rao, M. K., 1983, Actin changes in normal human and rat leukocytes and in transformed leukocytes, J. Natl. Cancer Inst. 70:805–809

    PubMed  CAS  Google Scholar 

  • Verghese, M. W., Smith, C. D., and Snyderman, R., 1985, Potential role for a guanine nucleotide regulatory protein in chemoattractant receptor mediated polyphosphoinositide metabolism, Ca2+ mobilization and cellular responses by leukocytes, Biochem. Biophys. Res. Commun. 127:450–457

    PubMed  CAS  Google Scholar 

  • Volpe, P., Krause, K. H., Hashimoto, S., Pozzan, T., Meldolesi, J., and Lew, D. P., 1988, “Calcisome,” a cytoplasmic organelle; the inositol 1,4,5 trisphosphate-sensitive Ca2+ store of non-muscle cells?, Proc. Natl. Acad. Sci. USA 85:1091–1095

    PubMed  CAS  Google Scholar 

  • Wegner, A., and Aktories, K., 1988, ADP-ribosylated actin caps the barbed ends of actin filaments, J. Biol. Chem. 263:13739–13742

    PubMed  CAS  Google Scholar 

  • Weissmann, G., Zurier, R. B., and Hoffstein, S., 1973, Leukocytes as secretory organs of inflammation, Agents Actions 3:370–379

    PubMed  CAS  Google Scholar 

  • Weissmann, G., Goldstein, I., Hoffstein, S., Chasavet, G., and Robineaux, R., 1975, Yin/Yang modulation of lysosomal enzyme release from polymorphonuclear leukocytes by cyclic nucleotides, Ann. N.Y. Acad. Sci. 256:222–232

    PubMed  CAS  Google Scholar 

  • Weissmann, G., Zurier, R. B., Spieler, P. J., and Goldstein, I. M., 1971, Mechanisms of lysosomal enzyme release from leukocytes exposed to immune complexes and other particles, J. Exp. Med. 134:149s-165s

    PubMed  CAS  Google Scholar 

  • Wessells, N. K., Spooner, B. S., Ash, J. F., Bradley, M. O., Luduena, M. A., Taylor, E. L., Wrenn, J. T.,and Yamada, K. M., 1971, Microfilaments in cellular and developmental processes, Science 171:135–143

    PubMed  CAS  Google Scholar 

  • White, J. R., Naccache, P. H., Molski, T. F. P., Borgeat, P., and Sha’afi, R. I., 1983a, Direct demonstration of increased intracellular concentration of free calcium in rabbit and human neutrophils following stimulation by chemotactic factors, Biophys. Res. Commun. 113:44–50

    CAS  Google Scholar 

  • White, J. R., Naccache, P. H., and Sha’afi, R. I., 1983b, Stimulation by chemotactic factor of actin association with the cytoskeleton in rabbit neutrophils, J. Biol. Chem. 258:14041–14047

    CAS  Google Scholar 

  • White, J. R., Huang, C. K., Hill, J. M., Naccache, P. H., Becker, E. L., and Sha’afi, R. I., 1984, Effect of phorbol 12-myristate 13-acetate and its analogue 4-phorbol 12,13-didecanoate on protein phosphorylation and lysosomal enzyme release in rabbit neutrophils, J. Biol. Chem. 259:8605–8611

    PubMed  CAS  Google Scholar 

  • Williams, M. B., and Jones, H. P., 1985, Calmodulin-dependent NAD-kinase of human neutrophils, Arch. Biochem. Biophys. 237:80–87

    PubMed  CAS  Google Scholar 

  • Wilson, E., Olcott, M. C., Bell, R. M., Merrill, A. H., and Lambeth, J. D., 1986, Inhibition of oxidative burst in human neutrophils by shingoid long-chain bases; role of protein kinase C in activation of the burst, J. Biol. Chem. 261:12616–12623

    PubMed  CAS  Google Scholar 

  • Woodin, A. M., and Wienke, A. A., 1963, The accumulation of calcium by polymorphonuclear leucocytes treated with staphylococcal leucocidin, Biochem. J. 87:487–495

    PubMed  Google Scholar 

  • Wright, C. D., and Hoffman, M. D., 1986, The protein kinase inhibitors H7 and H9 fail to inhibit human neutrophil activation, Biochem. Biophys. Res. Commun. 135:749–755

    PubMed  CAS  Google Scholar 

  • Yassin, R., Shefeyk, J., White, J. R., Tao, W., Volpi, M., Molski, T. F. P., Naccache, P. H., Feinstein, M. B., and Sha’afi, R. I., 1985, Effects of chemotactic factors and other agents on the amount of actin and a 65,000 MW protein associated with the cytoskeleton of rabbit and human neutrophils, J. Cell Biol. 101:182–188

    PubMed  CAS  Google Scholar 

  • Yin, H. L., 1987, Gelsolin: Calcium and polyphosphoinositide-regulated actin-modulating protein, Bio Essays 7:176–179

    CAS  Google Scholar 

  • Yin, H. L., and Stossel, T. P., 1979, Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein, Nature (London) 281:583–385

    CAS  Google Scholar 

  • Yin, L. Y., and Stossel, T. P., 1980, Purification and structural properties of gelsolin, a Ca2+-activated regulatory protein of macrophages, J. Biol. Chem. 255:9490–9493

    PubMed  CAS  Google Scholar 

  • Yin, H. L., and Stossel, T. P. 1982, The mechanism of phagocytosis, in Phagcytosis—Past and Future (M. L. Karnovsky and L. Bolis, eds.), pp 13–28. Academic Press, New York

    Google Scholar 

  • Yin, H. L., Iida, K., and Janmey, P. A., 1988, Identification of polyphosphoinositide-modulated domain in gelsolin which binds to the sides of actin filaments, J. Cell Biol. 106:805–812

    PubMed  CAS  Google Scholar 

  • Young, T. D. E., Ko, S. S., and Cohn, Z. A., 1984, The increase in intracellular free calcium associated with IgG/Fc receptor-ligand interactions: Role in phagocytosis, Proc. Natl. Acad. Sci. USA 81:5430–5434

    PubMed  CAS  Google Scholar 

  • Yuli, I., and Oplatka, A., 1987, Cytosolic acidification as an early transductory signal of human neutrophil chemotaxis, Science 235:240–342

    Google Scholar 

  • Zigmond, S. H., 1977, Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors, J. Cell Biol. 75:606–616

    PubMed  CAS  Google Scholar 

  • Zigmond, S. H., and Sullivan, S. J., 1981, Receptor modulation and its consequences for the response to chemotactic peptides, in Biology of the Chemotactic Response (J. M. Lackie and P. C. Wilkinson, eds.), pp. 73–87, Cambridge University Press, Cambridge

    Google Scholar 

  • Zurier, R. B., Hoffstein, S., and Weissmann, G., 1973a, Mechanisms of lysomal enzyme release from human leukocytes: Effect of cyclic nucleotides and colchicine, J. Cell Biol. 58:27–41

    CAS  Google Scholar 

  • Zurier, R. B., Hoffstein, S., and Weissman, G., 1973b, Cytochalasin B: effect on lysomal enzyme release from human leukocytes, Proc. Natl. Acad. Sci. USA 70:844–848

    CAS  Google Scholar 

  • Zurier, R. B., Weissman, G., Hoffstein, S., Kammerman, S., and Tai, H. H., 1974, Mechanisms of lysosomal enzyme release from human leukocytes. II. Effects of cAMP and CGMP autonomic agonists and agents which affect microtubule function, J. Clin. Invest. 53:297–309

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Al-Mohanna, F.A., Hallett, M.B. (1991). Mechanisms of Oxidase Activation in Neutrophils. In: Harris, J.R. (eds) Blood Cell Biochemistry Volume 3. Blood Cell Biochemistry, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3796-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3796-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6692-8

  • Online ISBN: 978-1-4615-3796-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics