Skip to main content

A Two-Electron-Group Model for a High Current Pseudospark or Back-Lighted Thyratron Plasma

  • Chapter
Physics and Applications of Pseudosparks

Part of the book series: NATO ASI Series ((NSSB,volume 219))

  • 356 Accesses

Abstract

A two-electron-group model is applied to a hydrogen pseudospark and/or backlighted thyratron switch plasma with peak electron density of 1–5x1015 cm-3 and peak current density of 104 A/cm2. In addition to a Maxwellian “bulk” plasma a second group of monoenergetic non-thermal electrons (energy ≥ 100 eV) is assumed to be produced in the high electric field region of the cathode fall. Collisional and radiative processes between electrons, ions and atomic hydrogen are modeled by a set of rate equations and line intensity ratios are compared with measurements. Under these high current conditions, for an initial density nH2≈1016 cm-3 the evaluated “bulk” plasma parameters are electron density of 1–3x1015 cm-3 and electron temperature of 1–1.5 eV, the estimated “beam” density is ≈ 1012–1013 cm-3. Results obtained from a Fokker-Planck and a transport momentum equation suggest the possibility of producing in a simple way a very high density electron beam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Frank, E. Boggasch, J. Christiansen, A. Goertler, W. Hartmann, C. Kozlik, G. Kirkman, C. Braun, V. Dominic, M. A. Gundersen, H.Riege and G. Mechtersheimer, “High Power Pseudospark and BLT Switches,” IEEE Trans. Plasma Sci. 6, 317 (1988).

    Article  Google Scholar 

  2. P. Chen, J. Dawson, R. W. Huff, and T. Katsouleas, “Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma,” Phys. Rev. Lett. 54, 693 (1985).

    Article  Google Scholar 

  3. G. F. Kirkman, H. Figueroa and M. A. Gundersen, “A plasma lens with highly stable properties,” Proceedings of the 1989 Workshop on Advanced Accelerator Concepts, to appear.

    Google Scholar 

  4. J. A. Kunc, S. Guha and M. A. Gundersen, “A fundamental theory of high power thyratrons, I: The electron temperature,” Laser and Particle Beams 1, 395 (1983).

    Article  Google Scholar 

  5. J. A. Kunc and M. A. Gundersen,“A fundamental theory of high power thyratrons, II: The production of hydrogen and positive ions, ” Laser and Particle Beams 1, 407 (1983).

    Article  Google Scholar 

  6. J. A. Kunc, D. E. Shemansky and M. A. Gundersen, “A fundamental theory of high power thyratrons for high power lasers and beam applications III: The production of radiation,” Laser and Particle Beams 2, 129 (1984).

    Article  Google Scholar 

  7. W. Hartmann, M. A. Gundersen, “Origin of Anomalous Emission on Superdense Glow Discharge,” Phys. Rev. Lett. 60, 2371 (1988).

    Article  Google Scholar 

  8. I. P. Shkarofsky, T. W. Johnston, M. P. Bachynski,The Particle Kinetics of Plasmas, Addison-Wesley Publishing Company (1966).

    Google Scholar 

  9. H. Dreicer, “Electron and Ion Runaway in Fully Ionized Gases. I,” Phys.Rev. 115, 238 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Dreicer, “Electron and Ion Runaway in Fully Ionized Gases. II,” Phys. Rev. 117, 329 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Spitzer, Physics of Fully Ionized Gases, Interscience Publishers, Inc., New York (1962).

    Google Scholar 

  12. L. Spitzer and R. Haerm, “Transport Phenomena in a Completely Ionized Gas,” Phys. Rev. 89, 977 (1953).

    Article  MATH  Google Scholar 

  13. G. Kirkman and M. A. Gundersen, “Spectroscopic analysis of the BLT plasma,” Proceedings of the Seventh IEEE Pulsed Power Conference, Monterey (1989).

    Google Scholar 

  14. H. Bauer, G. Kirkman, and M. A. Gundersen, “Modeling of the discharge plasma in a Back Lighted Thyratron during the conduction phase,” Proceedings of the Seventh IEEE Pulsed Power Conference, Monterey (1989).

    Google Scholar 

  15. M. N. Rosenbluth, W. M. Mc Donald and D. L. Judd, “Fokker-Planck Equation for an vol. Inverse Square Force,” Phys. Rev. 107, 1 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  16. N. A. Krall, A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill Book Company, NY (1973).

    Google Scholar 

  17. H. Bauer and M. A. Gundersen, “ Penetration and Equilibration of Injected Electrons into a High Current Hydrogen Pseudospark-type Plasma,” to be published.

    Google Scholar 

  18. D. R. Bates, A. E. Kingston and R. W. P. McWhirter, Proc. Roy. Soc. A267, 297 (1962).

    Google Scholar 

  19. D. R. Bates, A. E. Kingston and R. W. P. McWhirter, Proc. Roy. Soc. A270, 155 (1962).

    Google Scholar 

  20. J. A. Kunc, “Stepwise Ionization in a Non-Equilibrium Steady-State Hydrogen Plasma, ” J. Quant. Spectr. Radiat. Trans. 32, 311 (1984).

    Article  Google Scholar 

  21. J. F. Shaw, M. Mitchner and C. H. Kruger, “Effect of Nonelastic Collisions in Partially Ionized Gases, I. Analytical Solution and Results,” Phys. Fluids 13, 325 (1970).

    Article  Google Scholar 

  22. J. F. Shaw, M. Mitchner and C. H. Kruger, “Effect of Nonelastic Collisions in Partially Ionized Gases, I. Numerical Solution and Results,” Phys. Fluids 13, 339 (1970).

    Article  Google Scholar 

  23. L. C. Johnson, “Approximations for collisional and radiative Transition Rates in atomic hydrogen,” Astrophys. Journal 174, 227 (1972).

    Article  Google Scholar 

  24. Y. B. Zel’Ldovich and Y. P. Raizer, Physics of Shock Waves and High-Temperature Phenomena, Academic Press, New York (1966).

    Google Scholar 

  25. R. K. Janev, W. D. Langer, K. Evans, D. E. Post, Jr., Elementary Processes in Hydrogen and Helium Plasmas-Cross Sections and Reaction Rate Coefficients, Springer Verlag, Berlin-Heidelberg (1987).

    Book  Google Scholar 

  26. M. Mitchner, C. Kruger, Jr., Partially Ionized Gases, John Wiley & Sons, New York (1973).

    Google Scholar 

  27. T. Holstein, “Imprisonment of Resonance Radiation in Gases II,” Phys. Rev. 83, 1159 (1951).

    Article  MATH  Google Scholar 

  28. R. W. P. McWirther, Plasma Diagnostic Techniques, Academic Press, New York (1965).

    Google Scholar 

  29. J. More, B. Garbow and K. Hillstrom, “Use guide for Minipack-1,” Argonne National Laboratory Report, ANL-80–74, Argonne, Illinois (1980).

    Google Scholar 

  30. G. Dahlquist, A. Bjoerk and N. Anderson, Numerical Methods, Prentice- Hall, Inc., NJ (1974).

    Google Scholar 

  31. C. W. Gear, Numerical Initial Value Problem in Ordinary Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, NJ (1971).

    Google Scholar 

  32. C. D. Braun, D. A. Erwin, and M. A. Gundersen, “Fundamental processes affecting recovery in hydrogen thyratrons,” Appl. Phys. Lett. 50, 1325 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bauer, H., Kirkman, G., Gundersen, M.A. (1990). A Two-Electron-Group Model for a High Current Pseudospark or Back-Lighted Thyratron Plasma. In: Gundersen, M.A., Schaefer, G. (eds) Physics and Applications of Pseudosparks. NATO ASI Series, vol 219. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3786-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3786-1_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6687-4

  • Online ISBN: 978-1-4615-3786-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics