Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 224))

  • 326 Accesses

Abstract

The Pauli principle is usually implemented in the fermionic path integrals by Grassmann-variables. This form is, however, not well suited for a direct numerical simulation. The usual procedure is to perform the Grassmann-integral and simulate the bosonic system with an effective action containing the logarithm of the fermion determinant. Due to the non-locality of the effective bosonic action such fermion algorithms are, unfortunately, considerably slower than a typical pure bosonic algorithm (for a recent review see [1]). Moreover, the Monte Carlo integration of the effective bosonic field theory is only possible if the fermion determinant is positive. Examples where the fermion determinant is complex are, for instance: QCD with non-zero chemical potential or simple scalar-fermion models with chiral Yukawa-couplings etc. Under these circumtances the search for alternative, possibly local, fermion algorithms is well motivated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Weingarten, Nucl. Phys. B (Proc. Suppl.) 9 (1989) 447

    Article  ADS  Google Scholar 

  2. M. Karowski, R. Schrader, H. J. Thun, Commun. Math. Phys. 97 (1985) 5

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. W. Kerler, Z. Phys. C22 (1984) 185

    MathSciNet  Google Scholar 

  4. I. Montvay, Phys. Lett. B227 (1989) 260

    MathSciNet  Google Scholar 

  5. D. J. Gross, A. Neveu, Phys. Rev. D10 (1974) 3235

    ADS  Google Scholar 

  6. I. Montvay, to appear in the Proceedings of the 1989 Capri Conference on Lattice Field Theory, Nucl. Phys.B (Proc. Suppl. )

    Google Scholar 

  7. P. Rossi, U. Wolff, Nucl. Phys. B248 (1984) 105

    Article  ADS  Google Scholar 

  8. U. Wolff, Phys. Lett. 153B (1985) 92

    Google Scholar 

  9. F. Karsch, K.-H. Mütter, Nucl. Phys. B313 (1989) 541

    Article  ADS  Google Scholar 

  10. F. Karsch, to be published in the Proceedings of this Workshop

    Google Scholar 

  11. Y. Cohen, S. Elitzur, E. Rabinovici, Nucl. Phys. B220 (1983) 102

    Article  ADS  Google Scholar 

  12. T. Jolicoeur, A. Morel, B. Petersson, Nucl. Phys. B274 (1986) 225

    Article  ADS  Google Scholar 

  13. N. Attig, R. Lacaze, A. Morel, B. Petersson, M. Wolff, Nucl. Phys. B (Proc. Suppl.) 4 (1988) 595

    Google Scholar 

  14. R. Lacaze, A. Morel, B. Petersson, to appear in the Proceedings of the 1989 Capri Conference on Lattice Field Theory, Nucl. Phys.B (Proc. Suppl. )

    Google Scholar 

  15. G. Bhanot, S. Black, P. Carter, R. Salvador, Phys. Lett. 183B (1987) 331

    Google Scholar 

  16. M. Karliner, S. R. Sharpe, Y. F. Chang, Nucl. Phys. B302 (1988) 204

    Article  MathSciNet  ADS  Google Scholar 

  17. P. Mitra, P. Weisz, Phys. Lett. B126 (1983) 355

    Google Scholar 

  18. I. Montvay, Phys. Lett. 199B (1987) 89

    Google Scholar 

  19. P. Becher, H. Joos, Z. Physik, C15 (1982) 343

    MathSciNet  ADS  Google Scholar 

  20. J. E. Hirsch, D. J. Scalapino, R. L. Sugar, R. Blankenbecler, Phys. Rev. Lett. 47 (1981) 1628; Phys. Rev. B26 (1982) 5033

    Article  ADS  Google Scholar 

  21. A. Duncan, Phys. Rev. D38 (1988) 643

    ADS  Google Scholar 

  22. I. Montvay, Phys. Lett. 216B (1989) 375

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Montvay, I. (1990). Simulation of Staggered Fermions by Polymer Algorithms. In: Damgaard, P.H., Hüffel, H., Rosenblum, A. (eds) Probabilistic Methods in Quantum Field Theory and Quantum Gravity. NATO ASI Series, vol 224. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3784-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3784-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6686-7

  • Online ISBN: 978-1-4615-3784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics