Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 224))

  • 325 Accesses

Abstract

An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general non-linear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal non-perturbative invariant continuum regularization across all quantum field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Bern, M.B. Halpern, L. Sadun and C. Taubes, Phys. Lett. 165B, 151 (1985).

    Google Scholar 

  2. Z. Bern, M.B. Halpern, L. Sadun and C. Taubes, Nucl. Phys. B284, 1 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  3. Z. Bern, M.B. Halpern, L. Sadun and C. Taubes, Nucl. Phys. B284, 35 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  4. Z. Bern, M.B. Halpern, and L. Sadun, Nucl. Phys. B284, 92 (1987). Z. Bern, M.B. Halpern, and L. Sadun, Zeit, fur Physik C35, 255 (1987); L. Sadun Zeit, fur Physik C36, 467 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  5. Z. Bern, M.B. Halpern, and N. Kalivas Phys. Rev. D35, 753 (1987).

    ADS  Google Scholar 

  6. Z. Bern, H.S. Chan, and M.B. Halpern, Zeit. fur Physik C33, 77 (1987), Zeit. fur Physik 34, 267 (1987).

    Google Scholar 

  7. N. Kalivas, Phys. Rev. D36, 120 (1987).

    Google Scholar 

  8. M.B. Halpern, Phys. Lett. B185, 111 (1987).

    MathSciNet  Google Scholar 

  9. M.B. Halpern, Ann. Phys. (NY) 178, 272 (1987).

    Article  ADS  Google Scholar 

  10. H.S. Chan and M. B. Halpern, Zeit. fur Physik C36, 669 (1987).

    MathSciNet  Google Scholar 

  11. Z. Bern, and M.B. Halpern Zeit. fur Physik C39, 382 (1988).

    MathSciNet  Google Scholar 

  12. M.B. Halpern, Zeit. fur Physik C4O, 475 (1988).

    Google Scholar 

  13. M.B. Halpern and Y. Makeenko, Phys. Lett. B218, 230 (1989).

    Google Scholar 

  14. M.B. Halpern, in “Proceedings of the Symposium on Topological and Geometric Methods in Field Theory, Espoo 1986”. World, Cleveland 1986.

    Google Scholar 

  15. M.B. Halpern Nucl. Phys. B (Proc. Suppl.) 1A, 23 (1987).

    Google Scholar 

  16. P. Langevin, C.R. Acad. Sci. Paris 146, 530 (1908).

    MATH  Google Scholar 

  17. M. Lax, Rev. Mod. Phys. 38, 541 (1966); R.E. Mortensen, J. Stat. Phys. 1, 271 (1969); N.G. Van Kampen, Stochastic Processes in Physics and Chemistry ( North-Holland, Amsterdam 1981 ).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. G. Parisi and Wu Yong-Shi, Sci. Sin. 24, 483 (1981).

    Google Scholar 

  19. B.S. DeWitt, J. Math. Phys. 3, 1073(1962); B.S. DeWitt, in “General Relativity” (S.W. Hawking and W. Israel, Eds.), Cambridge Univ. Press, Cambridge 1979; B.S. DeWitt, in “Recent Developments in Gravitation” ( M. Levy and S. Deser, eds.), Plenum, New York, 1979.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. H. Rümpf, Phys. Rev. D33, 942 (1986).

    MathSciNet  Google Scholar 

  21. E. Nelson Phys. Rev. 150, 1079 (1966).

    Article  ADS  Google Scholar 

  22. I. Drummond, S. Duane and R.R. Horgan, Nucl. Phys. B230, 119 (1983); J. Alfaro and B. Sakita, Proceedings of the Topical Symposium on High Energy Physics (World Scientific, 1983); A. Guha and S. C. Lee, Phys. Rev. D27, 2412 (1983); M.B. Halpern Nucl. Phys. B228, 173 (1983).

    Article  MathSciNet  Google Scholar 

  23. R. Graham, Zeit. fur Physik B28, 397 (1977).

    Google Scholar 

  24. M. Claudson and M.B. Halpern Phys. Rev. D31, 3310 (1985); M. Claudson amd M.B. Halpern, Ann. Phys. (NY) 166, 33 (1986).

    MathSciNet  Google Scholar 

  25. R. Graham Phys. Lett. A109, 209 (1985); S. Caracciolo, H.C. Ren and Y.S. Wu, Nucl. Phys. B260, 381 (1985); G.G. Batrouni, H. Kawai and P. Rossi, J. Math. Phys. 27, 1641 (1986). The corresponding development in mathematics appears in H. H. Kuo, Trans. Am. Math. Soc. 159 (1971) 57. See also K.D. Elworthy “Stochastic Differential Equations on Manifolds” (Cambridge) 1981.

    ADS  Google Scholar 

  26. S. Ryang, T. Saito and K. Shigemoto, Prog. Th. Phys. 73, 1295 (1985); A.M. Horowitz Phys. Lett. 156B, 89 (1985).

    ADS  Google Scholar 

  27. D. Zwanziger Nucl. Phys. B192, 259 (1981); L. Beaulieu and D. Zwanziger, Nucl. Phys. B193, 163 (1981); D. Zwanziger, Phys. Lett. 114B, 337 (1982); D. Zwanziger, Nucl. Phys. B209, 336 (1982); E. Floratos and J. Iliopolis, Nucl. Phys. B214, 391 (1983); E. Floratos, J. Iliopolis and D. Zwanziger, Nucl. Phys. B241, 221 (1984).

    Article  ADS  Google Scholar 

  28. H.S. Chan and M. B. Halpern, Phys. Rev. D33, 540 (1986).

    MathSciNet  ADS  Google Scholar 

  29. J. Alfaro and B. Sakita, Phys. Lett. 121B, 339 (1983).

    MathSciNet  Google Scholar 

  30. J. Greensite and M.B. Halpern, Nucl. Phys. B211, 343 (1983).

    Article  ADS  Google Scholar 

  31. J. Greensite and M. B. Halpern, Nucl. Phys. B242, 167 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Claudson and M.B. Halpern, Phys. Lett. B151, 281 (1985); Z. Bern and H.S. Chan Nucl. Phys. B266, 509 (1986).

    MathSciNet  Google Scholar 

  33. H.W. Hamber and U.M. Heller, Phys. Rev. D29, 928 (1984);.G.G. Batrouni, G.R. Katz, A.S. Kronfeld, G.P. Lepage, B. Svetitsky and K.G. Wilson, Phys. Rev. D32, 2736 (1985). J. Kogut, Nucl. Phys. 461, 327 (1987).

    Google Scholar 

  34. R.F. Alvarez-Estrada and A. Munoz-Sudupe, Phys. Rev. D37, 2340 (1988).

    ADS  Google Scholar 

  35. J. Zinn-Justin and D. Zwanziger, Nucl. Phys. B295, 297 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  36. H. Cheng and E.C. Tsai, Phys. Rev. D34, 321 (1986); F. Steiner, Phys. Lett. 173B, 321 (1986).

    Google Scholar 

  37. M. Asorey and P.K. Mitter, Comm. Math Phys. 80, 43 (1981); I.M. Singer, Physica Scripta 24, 817 (1981).

    ADS  Google Scholar 

  38. A.J. Niemi and L.C.R. Wijewardhana, Ann. Phys. (NY) 140, 247 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  39. J.D. Breit, S. Gupta and A., Zaks, Nucl. Phys. B233, 61 (1984); Z. Bern, Nucl. Phys. B251, 633 (1985).

    Article  ADS  Google Scholar 

  40. Z. Bern and M. B. Halpern, Phys. Rev. D33, 184 (1986).

    MathSciNet  Google Scholar 

  41. M. Namiki and Y. Yamanaka, Had. Jour. 7 894 (1984).

    MathSciNet  Google Scholar 

  42. R. Doering, Phys. Rev. Lett. 55, 1657 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  43. G. Parisi and N. Sourlas, Phys. Rev. Lett. 43, 744 (1979).

    Article  ADS  Google Scholar 

  44. H. Nicolai, Phys. Lett. 89, 341 (1980).

    MathSciNet  Google Scholar 

  45. J.W. Van Holten, Erice EPS Study Conference (1981).

    Google Scholar 

  46. E. Gozzi, Phys. Rev. D28, 1922 (1983).

    MathSciNet  ADS  Google Scholar 

  47. B.W. Lee and J. Zinn-Justin, Phys. Rev. D5, 3121 (1972).

    ADS  Google Scholar 

  48. Yu. M. Makeenko and A.A. Migdal, Phys. Lett. B88, 135 (1979); Nucl. Phys. B188, 269 (1981).

    MathSciNet  Google Scholar 

  49. Yu.M. Makeenko, Phys. Lett. B212, 221 (1988).

    Google Scholar 

  50. M.B. Halpern, and P. Senjanovic, Phys. Rev. D15, 1655 (1977); M.B. Halpern, P. Senjanovic and A. Jevicki Phys. Rev. D16, 2476 (1977); M.B. Halpern and W. Siegel, Phys. Rev. D16, 2486 (1977); K. Bardakci and S. Samuel, Phys. Rev. D16, 2500 (1977).

    ADS  Google Scholar 

  51. J.-L. Gervais and A. Neveu, Nucl. Phys. B153, 445 (1979).

    Article  ADS  Google Scholar 

  52. O. Alvarez, Nucl. Phys. B216, 125 (1983).

    Article  ADS  Google Scholar 

  53. G.W. Gibbons, S. W. Hawking and M. J. Perry, Nucl. Phys. B138, 141 (1978); S. W. Hawking in: General Relativity, eds. S.W. Hawking and W. Israel, ( Cambridge U.P., Cambridge, 1979 ).

    Article  MathSciNet  ADS  Google Scholar 

  54. Z. Haba, J. Phys. A: Math. Gen. 18, 1641 (1985).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Halpern, M.B. (1990). Geometric Continuum Regularization of Quantum Field Theory. In: Damgaard, P.H., Hüffel, H., Rosenblum, A. (eds) Probabilistic Methods in Quantum Field Theory and Quantum Gravity. NATO ASI Series, vol 224. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3784-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3784-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6686-7

  • Online ISBN: 978-1-4615-3784-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics