Skip to main content

Excimer Lasers: Status and Perspectives

  • Chapter
  • 387 Accesses

Part of the book series: NATO ASI Series ((NSSB,volume 220))

Abstract

In this paper a status of the art on the excimer lasers is reported. After some general remarks, attention is fixed on rare gas halide lasers (RGH), in particular on the self-sustained discharge pumped ones. Problems related to a stable discharge developement are considered and related technological requirements are deduced. Considerations on the propagation of light beams in inverted media show the best way to exploit the active volume. Moreover, a brief review of excimer lasers with unconventional characteristics is done and finally few examples of experimental techniques to measure relevant laser parameters are reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.G. Basov et al., Sov.J.Quantum Electron. 1 (1971), 18.

    Article  ADS  Google Scholar 

  2. R. Srinivasan and V. Mayne-Bantom, Appl.Phys.Lett. 41 (1982), 576.

    Article  ADS  Google Scholar 

  3. H.A. Koehler et al., Appl.Phys.Lett. 21 (1972), 198

    Article  ADS  Google Scholar 

  4. P.W. Hoff et al., Opt.Comm. 8 (1973), 128

    Article  ADS  Google Scholar 

  5. G.B. Gerardo, A.W. Johnson, IEEE J.Quantum Electron. QE-19 (1973), 748

    Google Scholar 

  6. W.H. Hughes et al., Appl.Phys.Lett. 24 (1974), 488

    Article  ADS  Google Scholar 

  7. W.H. Hughes et al., Appl.Phys.Lett. 25 (1974), 85.

    Article  ADS  Google Scholar 

  8. J.H. Parks, Appl.Phys.Lett. 31 (1977), 192

    Article  ADS  Google Scholar 

  9. J.H.Parks, Appl.Phys.Lett. 31 (1977), 297; W.T.Whitney, Appl.Phys.Lett. 32 (1978), 239

    Google Scholar 

  10. K.Y. Tang et al., Appl.Phys.Lett. 32 (1978), 226.

    Article  ADS  Google Scholar 

  11. C.K. Rhodes: “Excimer Lasers”, II ed., Springer-Verlag, 1984.

    Google Scholar 

  12. J.E. Velazco et al., J.Chem.Phys. 65 (1976), 3468.

    Article  ADS  Google Scholar 

  13. V. Boffa et al., SPIE 701 pg.158, ECOOSA ‘86.

    Google Scholar 

  14. G.C. Tisone et al., IEEE J.Quantum Electron. QE-18 (1982), 1008.

    Article  ADS  Google Scholar 

  15. J.H. Jacob et al., J.Appl.Phys. 50 (1979), 5130.

    Article  ADS  Google Scholar 

  16. M. Hunter et al., IEEE J.Quantum Electron. QE-22 (1986), 386.

    Article  ADS  Google Scholar 

  17. C.P. Christensen et al., Opt.Lett. 12 (1987),169.

    Article  ADS  Google Scholar 

  18. L.G. Wiley et al., Appl.Phys.Lett. 35 (1979), 239.

    Article  ADS  Google Scholar 

  19. M.S. Arteev et al., Sov.J.Quantum Electron. 16 (1986), 1448.

    Article  ADS  Google Scholar 

  20. M.A. Prelas et al., Laser & Particle Beams 6 (1988), 25.

    Article  ADS  Google Scholar 

  21. W.H. Long Jr. and M.L. Bhaumik, J.de Physique 40 (1979),C7,127.

    ADS  Google Scholar 

  22. J.I. Levatter, S.C. Lin, J.Appl.Phys. 51 (1980), 210.

    Article  ADS  Google Scholar 

  23. K. Midorikawa et al., IEEE J.Quantum Electron. QE-20 (1984), 198.

    Article  ADS  Google Scholar 

  24. G. Stielow et al., Appl.Phys.B 47 (1988), 333; M.Ohwa, M.Obara, J.Appl.Phys. 59 (1986), 32

    Google Scholar 

  25. M.Maeda et al., Jap.J.Appl.Phys. 21 (1982), 1161; H.Hokazono et al., J.Appl.Phys. 56 (1984), 680.

    Google Scholar 

  26. M.R. Osborne, M.H.R. Hutchinson, J.Appl.Phys. 59 (1986),711

    Article  ADS  Google Scholar 

  27. R.S. Taylor, Appl.Phys.B 41 (1986),1.

    Article  ADS  Google Scholar 

  28. J. Coutts, C.E. Webbs, J.Appl.Phys. 59 (1986),704.

    Article  ADS  Google Scholar 

  29. T. Hermsen, Opt.Comm. 64 (1987), 59.

    Article  ADS  Google Scholar 

  30. C.A. Luca and H.N. Rutt, Opt.& Laser Techn. 21 (1989),99.

    Article  ADS  Google Scholar 

  31. T.Letardi et al., ENEA Technical Report, RT/TIB/87/49.

    Google Scholar 

  32. W.W. Rigrod, IEEE J.Quantum Electron., QE-14 (1978), 377

    Article  ADS  Google Scholar 

  33. G.M. Schindler, IEEE J.Quantum Electron. QE-16 (1980), 546

    Article  ADS  Google Scholar 

  34. D. Eimerl, J.Appl.Phys. 51 (1980),3008.

    Article  ADS  Google Scholar 

  35. T. Hermsen, to be published on ENEA Technical Report.

    Google Scholar 

  36. A.E. Siegman, Appl.Opt. 13 (1974), 353.

    Article  ADS  Google Scholar 

  37. P.G. Gobbi, G.C. Reali, Opt.Comm. 52 (1984), 195

    Article  ADS  Google Scholar 

  38. V. Boffa et al., IEEE J.Quantum Electron. QE-23 (1987), 1241.

    Article  ADS  Google Scholar 

  39. P. Di Lazzaro et al., Appl.Phys.B 39 (1986),131

    Article  ADS  Google Scholar 

  40. D.T.J. McKee and G.T. Boyd, Appl. Opt. 27 (1988), 1810.

    Article  ADS  Google Scholar 

  41. J.P. Partanen, M.J. Shaw, Appl.Phys.B 43 (1987),231

    Article  ADS  Google Scholar 

  42. T.J. Pacala et al., Appl.Phys.Lett. 45 (1984), 507.

    Article  ADS  Google Scholar 

  43. Efthimiopoulos et al., Can.J.Phys. 57 (1979), 1437

    Article  ADS  Google Scholar 

  44. C.P. Christensen et al., Appl.Phys.Lett. 29 (1976), 424.

    Article  ADS  Google Scholar 

  45. G. Reksten et al., Appl.Phys.Lett. 39 (1981), 129.

    Article  ADS  Google Scholar 

  46. J.H. Glownia et al., J.Opt.Soc.Am.B 4 (1987), 1061

    Article  ADS  Google Scholar 

  47. S. Szatmari et al., Opt.Comm. 63 (1987), 305

    Article  ADS  Google Scholar 

  48. S. Watanabe, Opt.Lett. 13 (1988), 580.

    Article  ADS  Google Scholar 

  49. R.L. Fork et al., Opt.Lett. 9 (1984), 150.

    Article  ADS  Google Scholar 

  50. R.S. Taylor and K.L. Leopold, J.Appl.Phys. 65 (1989) 22.

    Article  ADS  Google Scholar 

  51. W.G. Long et al., Appl.Phys.Lett. 62 (1987), 735.

    Google Scholar 

  52. L.F. Champagne et al., J.Appl.Phys. 62 (1987), 1576.

    Article  ADS  Google Scholar 

  53. Lasers & Optronics, January 1989, pg.8.

    Google Scholar 

  54. Laser Focus, September 1988, pg.8.

    Google Scholar 

  55. J.K. Rice et al., IEEE J.Quantum Electron. QE-16 (1980), 1315.

    Article  ADS  MathSciNet  Google Scholar 

  56. A. De Angelis et al., Appl.Phys.B 47 (1988), 1.

    Article  ADS  Google Scholar 

  57. G.Giordano et al., ENEA Technical Report RT/TIB/87/65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bollanti, S., Letardi, T. (1990). Excimer Lasers: Status and Perspectives. In: Capitelli, M., Bardsley, J.N. (eds) Nonequilibrium Processes in Partially Ionized Gases. NATO ASI Series, vol 220. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3780-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3780-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6685-0

  • Online ISBN: 978-1-4615-3780-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics