Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 220))

Abstract

Excimer lasers with wavelengths in the visible and UV regions have been extensively studied in these last years1–8 for their importance in many technological applications. Those lasers are mostly formed by a combination between a rare gas and an halogen containing molecule. We report here the description of a self-consistent model which describes the temporal evolution of an excimer laser mixture under the action of the voltage applied to the electrodes of the laser cell and provided by an electrical external circuit. The laser mixture we considered Ne-Xe-HC1 (0.95–0.044–0.006) is used in the experimental device, (10 litem volume, X Ray preionization) setted at the ENEA Laboratories of Frascati9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Bollanti, T. Letardi, this volume

    Google Scholar 

  2. M.J. Kushner, this volume

    Google Scholar 

  3. T. Letardi, S. Bollanti, P. DI Lazzaro, F. Flora, G. Giordano, T. Hermsen, C. Zheng, “Excimer. Lasers and Applications” ECO 1, Ed. D. Basting, Hamburg, 21–23 Sept. 1988

    Google Scholar 

  4. G. Stievlow, T. Hammer, W. Bötticher, Appl. Phys. B 47:333 (1988)

    Article  ADS  Google Scholar 

  5. C. Gorse, M. Capitelli, Proc. IX ESCAMPIG, Lisbon, Ed. C.M. Ferreira, p 193 (1988), C. Gorse, R. Caporusso, M. Capitelli, “New Laser Technologies and Applications”, Olympia, eds. A.A. Carabelas and T. Letardi, Societa Italiana di Fisica p 439 (1988)

    Google Scholar 

  6. M. Maeda, A. Takahashi, T. Mizunami, Y. Miyazoe, J. Appl. Phys. 21:1161 (1982)

    Article  Google Scholar 

  7. L.A.Levin,S.E. Moody, E.L.Klosterman, R.E. Center, J.J. Ewing, IEEE J. Quantum Electron. QE-17:2282 (1981)

    Article  ADS  Google Scholar 

  8. H. Hokazono,K. Midorikawa, M. Obara, T. Fujioka, J. Appl. Phys. 56:680 (1984)

    Article  ADS  Google Scholar 

  9. S. Bollanti, P. Di Lazzaro, F. Flora, G. Giordano, T. Letardi, T. Hermsen, C.E. Zheng, ENEA (Frascati) Report RT/TIB/88/43 (1988)

    Google Scholar 

  10. S. Bollanti, Thesis University of Rome (1986)

    Google Scholar 

  11. S.D. Rockwood, Phys. Rev. A 8:2348 (1973)

    Article  ADS  Google Scholar 

  12. C.J. Elliott, A.E. Greene, J. Appl. Phys. 47:2946 (1976)

    Article  ADS  Google Scholar 

  13. R.D. Hake, A.V. Phelps, Phys. Rev. 158:70 (1967)

    Article  ADS  Google Scholar 

  14. D.K. Davies, Westinghouse report AFWAL-TR+82:2083 (1982)

    Google Scholar 

  15. A.G. Robertson, J. Phys. B. 5:648 (1972)

    Article  ADS  Google Scholar 

  16. L.S. Frost, A.V. Phelps, Phys. Rev. A 136:1538 (1964)

    Article  ADS  Google Scholar 

  17. D. Trigiante, Computing 18:117 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. N.J. Mason, W.R. Newell, J. Phys. B: At. Mol. Phys. 20:1357 (1987)

    Article  ADS  Google Scholar 

  19. P.S. Ganas, Molec. Phys. 38:1127 (1979)

    Article  ADS  Google Scholar 

  20. D. Rapp, P. Englander-Golden, J. Chem. Phys. 43:1464 (1965)

    Article  ADS  Google Scholar 

  21. H.V. Boening, “Plasma Science and Technology Cornell Univ. Press”, Ithaca (1982)

    Google Scholar 

  22. D. Ton-That, M.R. Flannery, Phys. Rev. A 15:517 (1977)

    Article  ADS  Google Scholar 

  23. M. Rokni, J. Jacob, J.A. Mangano, Appl. Phys. Lett. 34:187 (1979)

    Article  ADS  Google Scholar 

  24. J. Jacob, J.C. Hsia, J.A. Mangano, M. Rokni, J. Appl. Phys. 50:5130 (1979)

    Article  ADS  Google Scholar 

  25. G.C. Tisone, J.M. Hoffman, IEEE J. Quantum Electron. QE-18:1008 (1982)

    Article  ADS  Google Scholar 

  26. F. Kannari, A. Suda, M. Obara, T. Fujioka, IEEE J. Quantum Electron. QE-19:1587 (1983)

    Article  ADS  Google Scholar 

  27. R.W.F. Gross, J.F. Bott, “Handbook Chemical Laser”, Interscience, New-York (1976)

    Google Scholar 

  28. P. Millet, A. Birot,H. Brunet, J. Galy, B. Pons-Germain, J.L. Teyssier, J. Chem. Phys. 69:92 (1978)

    Article  ADS  Google Scholar 

  29. D.O Huestis, R.M. Hill, H.H. Nakano, D.C. Lorentz, J. Chem. Phys. 69:5133 (1978)

    Article  ADS  Google Scholar 

  30. J.H. Kolts, J.E. Velazco, D.E. Setser, J. Chem. Phys. 71:1247 (1979)

    Article  ADS  Google Scholar 

  31. R.S.F. Chang, J. Chem. Phys. 76:2943 (1982)

    Article  ADS  Google Scholar 

  32. D.C. Lorentz, D.J. Eckstrom, D. Huestis, “Excimer formation and decay processes in rare gases” (AD-778–326) Stanford Research Inst. Rep. MP 73–2, Sept. 1973

    Google Scholar 

  33. E. Zamir C.W. Werner, W.P. Lapatovich, E.V. George, Appl. Phys. Lett. 27:56 (1975)

    Article  ADS  Google Scholar 

  34. R.H. Neynaber, S.Y. Tang, J. Chem. Phys. 70:4272 (1979)

    Article  ADS  Google Scholar 

  35. D. Smith, A.G. Deam, J. Phys. B 5:2134 (1972)

    Article  ADS  Google Scholar 

  36. C.B. Collins, F.W. Lee, J. Chem. Phys., 72:538 (1980)

    Article  Google Scholar 

  37. T.G. Finn, L.J. Palumbo, L.F. Champagne, Appl. Phys. Lett. 33:148 (1978)

    Article  ADS  Google Scholar 

  38. A.P. Vitols, H.J. Oskam, Phys. Rev. A 5:2618 (1972)

    Article  ADS  Google Scholar 

  39. R.J. Johnson, J. Chem. Phys. 68:2991 (1978)

    Article  ADS  Google Scholar 

  40. H.J. Oskam, V.R. Mittelstad, Phys. Rev. 32:1445 (1963)

    Article  ADS  Google Scholar 

  41. J. N. Bardsley, Adv. At. Mol. Phys. 6:2 (1970)

    ADS  Google Scholar 

  42. J.M. Hoffman, J.B. Moreno, Sandia Nat. Lab. Rep. SAND80–1486, Albuquerque (1980)

    Google Scholar 

  43. B. Schneider, J. Chem. Phys. 61:3240 (1974)

    Article  ADS  Google Scholar 

  44. G.P. Glass, F.K. Tittel, W.L. Wilson, M.S. Smayling, Chem. Phys. Lett., 83:585 (1981)

    Article  ADS  Google Scholar 

  45. T.G. Finn, R.S.F. Chang, L.T. Palumbo, L.F. Champagne, Appl. Phys. Lett., 36:789 (1980)

    Article  ADS  Google Scholar 

  46. H.P. Grieneisen, H. Xue-Jing, K.L. Kompa, Chem. Phys. Lett., 82:421 (1981)

    Article  ADS  Google Scholar 

  47. W.R. Wadt, J. Chem. Phys. 73:3915 (1980)

    Article  ADS  Google Scholar 

  48. N. Basov et al., Sov. Tech. Phys. Lett. 5:183 (1979)

    Google Scholar 

  49. C. Duzy, H.A. Hyman, Phys. Rev. A 22:1878 (1980)

    Article  ADS  Google Scholar 

  50. D.E. Rothe, Phys. Rev. 177:93 (1969)

    Article  ADS  Google Scholar 

  51. C. Gorse, M. Capitelli, A. Dipace, J. Appl. Phys. (1990) in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gorse, C. (1990). Non Equilibrium Excimer Laser Kinetics. In: Capitelli, M., Bardsley, J.N. (eds) Nonequilibrium Processes in Partially Ionized Gases. NATO ASI Series, vol 220. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3780-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3780-9_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6685-0

  • Online ISBN: 978-1-4615-3780-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics