Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 220))

  • 391 Accesses

Abstract

In most gas discharges which are used for ion sources, for laser media, in plasma chemistry and for the generation of thin films, the average electron energy ranges from a few eV up to some 10-30 eV. The energy distribution is not quite a Maxwellian distribution, often it has an extended high energy tail and it may have some deviations due to individual collision processes with very large cross sections. This is for example the case in the earth lower ionosphere because of the process

$$ {{e}^{ - }} + {{N}_{2}} \to {{N}_{2}}^{ - }(\nu ) \to {{N}^{2}}(\nu ) + {{e}^{ - }} $$

i.e. the formation of short living negative ion states of the nitrogen molecules, which decay by autoionisation but the molecules remain excited in high vibrational states. Since the majority of the electrons have energies of only a few eV, vibrational and rotational excitations by electrons are of great importance. On the other hand, most electronic excitation and ionisation processes need impact energies of more than 10 eV, i.e. their thresholds are already in the range of the exponentially decreasing intensity of the electron distributions. This means that it is necessary to know both, the electron energy distributions and the cross sections close to the relevant thresholds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.K. Janev et al, “Elementary Processes in Hydrogen-Helium Plasmas”, Springer Verlag Berlin, Heidelberg, New York 1987

    Book  Google Scholar 

  2. J.M. Wadehra and J.N. Bardsley, Phys. Rev. Lett. 41, 1795 (1978)

    Article  ADS  Google Scholar 

  3. A. Stamatovic and G.J. Schulz, Rev. Sci. Instr. 41, 423 (1970)

    Article  ADS  Google Scholar 

  4. J. Ferch, B. Granitza, C. Masche and W. Raith, J. Phys. B 18, 967 (1985)

    Article  ADS  Google Scholar 

  5. B. Jaduszliwer, G.F. Shen, J.L. Cai and B. Bederson, Phys. Rev. A 31, 1157 (1985)

    Article  ADS  Google Scholar 

  6. P. Marmet and L. Kervin, Can. J. Phys. 38, 787 (1960)

    Article  ADS  Google Scholar 

  7. J.A. Simpson, Rev. Sci. Instr. 35, 1698 (1964)

    Article  ADS  Google Scholar 

  8. C.E. Kyatt and J.A. Simpson, Rev. Sci. Instr. 38, 103 (1967)

    Article  ADS  Google Scholar 

  9. R.E. Kennerly, R.J. van Brunt and A.C. Gallager, Phys. Rev. A 23, 2430 (1981)

    Article  ADS  Google Scholar 

  10. D. Field, G. Mrotzek, D.W. Knight, S. Lunt and J.P. Ziesel, Proc. of the XV. International Conference on the Physics of Electronic and Atomic Collisions (ICPEAC), Bristol 1987, p. 266

    Google Scholar 

  11. P.J. Hicks, S. Daviel, B. Wallbank and J. Comer, J. Phys. E 13, 713 (1980)

    Article  ADS  Google Scholar 

  12. T.A. York and J. Comer, J. Phys. B 16, 3627 (1983)

    Article  ADS  Google Scholar 

  13. T.A. York and J. Comer, J. Phys. B. 17, 2563 (1984)

    Article  ADS  Google Scholar 

  14. S.F. Wong and L. Dubé, Phys. Rev. A 17, 570 (1978)

    Article  ADS  Google Scholar 

  15. K. Jung, Th. Antoni, R. Müller, K.-H. Kochern and H. Ehrhardt, J. Phys. B 15, 3535 (1982)

    Article  ADS  Google Scholar 

  16. R.C. Slater, M.G. Fickes, G.W. Becker and R.C. Stern, J. Chem. Phys. 60, 4697 (1974)

    Article  ADS  Google Scholar 

  17. R.C. Slater, M.G. Fickes, W.G. Becker and R.C. Stern, J. Chem. Phys. 61, 2290 (1974)

    Article  ADS  Google Scholar 

  18. M.R.H. Rudge, S. Trajmar and W. Williams, Phys. Rev. A 13, 2074 (1976)

    Article  ADS  Google Scholar 

  19. L. Vuskovic, S.K. Srivastava and S. Trajmar, J. Phys. B 11, 1643 (1978)

    Article  ADS  Google Scholar 

  20. B. Jaduszliwer, A. Tino, P. Weiss and B. Bederson, Phys. Rev. Lett. 18, 1644 (1983)

    Article  ADS  Google Scholar 

  21. H. Ehrhardt and F. Linder, Phys. Rev. Lett. 21, 419 (1968)

    Article  ADS  Google Scholar 

  22. F. Linder and H. Schmidt, Zeitschr. f. Naturforschung 26a, 1603 (1971)

    ADS  Google Scholar 

  23. E.S. Chang and S.F. Wong, Phys. Rev. Lett. 38, 1327 (1977)

    Article  ADS  Google Scholar 

  24. F.H. Read, J. Phys. B 5, 255 (1972)

    Article  ADS  Google Scholar 

  25. J. Shimamura, Chem. Phys. Lett. 73, 328 (1980)

    Article  ADS  Google Scholar 

  26. K. Jung, K.-M. Scheuerlein, W. Sohn, K.-H. Kochern and H. Ehrhardt, J. Phys. B. 20, L327 (1987)

    Article  ADS  Google Scholar 

  27. H. Tanaka, Symp. on Electron-Molecule Collisions, p. 31, Tokyo, 1979

    Google Scholar 

  28. E.S. Chang, Th. Antoni, K. Jung and H. Ehrhardt, Phys. Rev. A 30, 2086 (1984)

    Article  ADS  Google Scholar 

  29. R. Müller, K. Jung, K.-H. Kochem, W. Sohn and H. Ehrhardt, J. Phys. B 18, 3971 (1985)

    Article  ADS  Google Scholar 

  30. Th. Antoni, K. Jung and H. Ehrhardt, and E.S. Chang, J. Phys. B 19, 1377 (1986)

    Article  ADS  Google Scholar 

  31. G. Knoth, M. Rädle, K. Jung and H. Ehrhardt, to be published

    Google Scholar 

  32. G. Knoth, M. Rädle, H. Ehrhardt and K. Jung, Europhys. Lett. 4, 805 (1987)

    Article  ADS  Google Scholar 

  33. S.K. Srivastava, R.I. Hall, S. Trajmar and A. Chutjian, Phys. Rev. A 12

    Google Scholar 

  34. G. Ziegler, M. Rädle, O. Pütz, K. Jung, H. Ehrhardt and K. Bergmann, Phys. Rev. Lett. 58, 2642 (1987)

    Article  ADS  Google Scholar 

  35. H.-J. Korsch, H. Kutz and H.D. Meyer, J. Phys. B 20, L433 (1987)

    Article  ADS  Google Scholar 

  36. G.J. Schulz, Phys. Rev. 125, 229 (1962)

    Article  ADS  Google Scholar 

  37. W. Sohn, K.-H. Kochern, K.-M. Scheuerlein, K. Jung and H. Ehrhardt, J. Phys. B 20, 3217 (1987)

    Article  ADS  Google Scholar 

  38. K. Rohr and F. Linder, J. Phys. B 9, 2521 (1976)

    Article  ADS  Google Scholar 

  39. K.-H. Kochern, W. Sohn, K. Jung, H. Ehrhardt and E.S. Chang, J. Phys. B 18, 1253 (1985)

    Article  ADS  Google Scholar 

  40. K.-H. Kochern, W. Sohn, N. Hebel, K. Jung and H. Ehrhardt, J. Phys. B 18, 4455 (1985)

    Article  ADS  Google Scholar 

  41. W. Sohn, K.-H. Kochern, K.-M. Scheuerlein, K. Jung and H. Ehrhardt, J. Phys. B 19, 4017 (1986)

    Article  ADS  Google Scholar 

  42. W. Sohn, K.-H. Kochern, K. Jung, H. Ehrhardt and E.S. Chang, J. Phys. B 18, 2049 (1985)

    Article  ADS  Google Scholar 

  43. M. Allan, J. Phys. B 18, L451 (1985)

    Article  ADS  Google Scholar 

  44. M. Allan, J. Phys. B 18, 4511 (1985)

    Article  ADS  Google Scholar 

  45. R. Azria, Y. LeCoat, D. Simon and M. Tronc, J. Phys. B 13, 1909 (1980)

    Article  ADS  Google Scholar 

  46. Atomic Data for controlled Fusion Research, Oak Ridge Nat. Lab. Report Nr. ORLN-5206, Vol. I and II (1977)

    Google Scholar 

  47. Atomic and Molecular Data for Fusion, UKAEA Reports, Culham Lab., Abingdon, England, 1982.

    Google Scholar 

  48. Several Data Collections have also been published by the Institute of Plasma Physics, Nagoya, Japan.

    Google Scholar 

  49. See also G. Csanak, D.C. Cartwright, S.K. Srivastava and S. Trajmar, in “Electron-Molecule Interactions and Their Applications”, Vol. 1 and 2, Academic NY 1984

    Google Scholar 

  50. D. Cubrié, J. Jureta and S. Cvejanovie, III. European Conference on Atomic and Molecular Physics, Bordeaux, April 1989

    Google Scholar 

  51. H. Ehrhardt, L. Langhans, F. Linder, Z. Phys. 214, 179 (1968)

    Article  ADS  Google Scholar 

  52. J.R. Hiskes and A.M. Karo, Appl. Phys. Lett. 54 (1989)

    Google Scholar 

  53. A. Weingartshofer, H. Ehrhardt, V. Hermann and F. Linder, Phys. Rev. A 2, 294 (1970)

    Article  ADS  Google Scholar 

  54. T.D. Märrk, “Ionisation of Molecules by Electron Impact” in L.G. Christophoron (ed.) “Electron-Molecule Interactions and Their Applications”, Vol. 1, Academic, NY (1984) and

    Google Scholar 

  55. T.D. Märk and G.H. Dunn (eds.) “Electron Impact Ionisation”, Springer Verlag, Wien 1985

    Book  Google Scholar 

  56. H. Ehrhardt, K. Jung, G. Knoth and P. Schlemmer, Z. Phys. D - Atoms, Molecules and Clusters 1, 3 (1986)

    Article  ADS  Google Scholar 

  57. W. Lotz, Z. Phys. 232, 101 (1970) and references given in this article

    Google Scholar 

  58. N. Oda, Radiat. Res. 64, 80 (1975)

    Article  Google Scholar 

  59. R. Müller-Fiedler, K. Jung, H. Ehrhardt, J. Phys. B 19, 1211 (1986)

    ADS  Google Scholar 

  60. T.W. Shyn, W.W. Sharp, Y.K. Kim, Phys. Rev. A 24, 79 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ehrhardt, H. (1990). Electron Collisions with Molecules. In: Capitelli, M., Bardsley, J.N. (eds) Nonequilibrium Processes in Partially Ionized Gases. NATO ASI Series, vol 220. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3780-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3780-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6685-0

  • Online ISBN: 978-1-4615-3780-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics