Skip to main content

Laser Diagnostics of a Hydrogen Discharge

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 220))

Abstract

When modelling a partially ionized plasma, one is working with a set of rate equations, describing the production and destruction of the particle species occurring in the discharge (Hiskes, 1987; Gorse et al., 1987). Depending on the level of detail of the description, the number of interacting species can increase to a large number. An elementary description of a hydrogen plasma would involve molecules, H2, metastable molecules, H2 *, atoms, Ho, one type of ion, Hi +, and electrons. When more precision is required, one would have to replace the ion by H-, H+, H2 + and H3 +, and successively add more and more excited states, including both electronic and molecular excitations. The reaction rates occurring in the equations are expressions of the following form:

$$ R = \iint {\sigma (\left| {{{v}_{1}} - {{v}_{2}}} \right|)(\left| {{{v}_{1}} - {{v}_{2}}} \right|){{F}^{a}}({{v}_{1}}){{F}^{b}}({{v}_{2}}){{d}^{3}}{{v}_{1}}{{d}^{3}}{{v}_{2}},} $$
((1))

where, σ, which is a function of the relative velocity |v1 - v2|, is the cross section describing the interaction between particles of species a and b, and Fa(v1) and Fb(v2) are their distribution functions. Equation (1) clarifies that an ideal diagnostic technique measures the complete distribution function of each particle species. Only then, a precise comparison between modelling and experimental results is possible. In the majority of discharges, however, the particles make a sufficient number of collisions for the distribution function to approach a Maxwellian. Then, a measurement of density and temperature would suffice. For two species of the same temperature T, Eq. (1) attains the much simpler form,

$$ R = {{n}_{a}}{{n}_{b}}\surd (8kT/\pi \mu )\smallint \sigma (E)\exp ( - E)EdE, $$
((2))

where, n gives the densities of species a and b, respectively, E = (µv2/2kT) is the relative energy of motion with v the relative velocity, and µ is the reduced mass, µ = (ma + mb)/mamb.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • M. Bacal, G.W. Hamilton, A.M. Bruneteau, H.J. Doucet and J. Taillet, 1979, Measurement of H- density in plasma by photodetachment, Rev. Sci. Instr., 50 719.

    Article  ADS  Google Scholar 

  • A. Boileau, M. von Hellermann, W. Mandl, H.P. Summers, H. Weisen and A. Zinoviev, 1989, Observation of motional Stark features in the Balmer spectrum of deuterium in the JET plasma, J. Phys. B 22: L145.

    Article  ADS  Google Scholar 

  • J.H.M. Bonnie, P.J. Eenshuistra and H.J. Hopman, 1988, Scaling laws for atomic and molecular hydrogen in a multicusp ion source, Phys. Rev. A 37: 1121.

    Article  Google Scholar 

  • J.H.M. Bonnie, E.H.A. Granneman and H.J. Hopman, 1987, Resonance-enhanced multiphoton ionization for diagnosis of a weakly ionzed plasma, Rev. Sci. Instr. 58: 1353.

    Article  ADS  Google Scholar 

  • J.H.M. Bonnie, J.W.J. Verschuur, H.J. Hopman and H.B. Van Linden Van Den Heuvel, 1986, Photoelectron spectroscopy on resonantly enhanced multiphoton dissociative ionization of hydrogen molecules, Chem. Phys. Letters 130 43.

    Article  ADS  Google Scholar 

  • J.D. Buck, D.C. Robie, A.P. Hickman, D.J. Bamford and W.K. Bischel, 1989, Two-photon excitation and excited state absorption cross sections for H2 E,F 1 Σg (v = 6): measurement and calculation, to be published in Phys. Rev. A.

    Google Scholar 

  • C.B. Burckhardt, 1970, Use of a random phase mask for the recording of Fourier transform holograms of data masks, Appi. Opt. 9: 695.

    Article  ADS  Google Scholar 

  • W. Demtröder, 1982, “Laser Spectroscopy”, Springer Verlag, Berlin.

    Google Scholar 

  • E.A. Den Hartog, T.R. O’Brian and J.E. Lawler, 1989, Electron temperature and density diagnostics in a helium glow discharge, Phys. Rev. Letters 62 1500.

    Article  ADS  Google Scholar 

  • P.J. Eenshuistra, J.H.M Bonnie, J. Los and H.J. Hopman, 1988, Observation of exceptionally high vibrational excitation of hydrogen molecules formed by wall recombination, Phys. Rev. Letters 60: 341.

    Article  ADS  Google Scholar 

  • P.J. Eenshuistra, A.W. Kleyn and H.J. Hopman, 1989, Plateau formation in the measured vibrational distribution of hydrogen in a volume source, Europhys. Letters 8: 423.

    Google Scholar 

  • P.J. Eenshuistra, 1989, “Vibrational Excitation in a Hydrogen Volume Source”, Thesis, University of Amsterdam.

    Google Scholar 

  • C. Gorse, M. Capitelli, M. Bacal, J. Bretagne and A. Lagana, 1987, Progress in the non-equilibrium vibrational kinetics of hydrogen in magnetic multicusp H- ion sources, Chem. Phys. 117: 177.

    Article  ADS  Google Scholar 

  • E.H.A. Granneman and M.J. Van Der Wiel, Transport, dispersion and detection of electrons, ions and neutrals, in: “Handbook on Synchrotron Radiation”, Vol. I, E.E. Koch, ed., North Holland Publishing Co, Amsterdam (1983).

    Google Scholar 

  • R.I. Hall. I. Čadež, M. Landau, F. Pichou and C. Scherman, 1988, Vibrational excitation of hydrogen via recombinative desorption of atomic hydrogen gas on a metal surface, Phys. Rev. Letters 60: 337.

    Article  ADS  Google Scholar 

  • E. Hintz, 1982, Plasma boundary diagnostics by laser induced fluorescence, Physica Scripta T2: 454.

    Article  ADS  Google Scholar 

  • J.R. Hiskes, 1987, Atomic processes in hydrogen negative ion discharge, Comments At. Mol. Phys. 19: 59.

    Google Scholar 

  • M.B. Hopkins and W.G. Graham, 1986, Langmuir probe techniques for plasma parameter measurement in a medium density discharge, Rev. Sci. Instr. 57: 2210.

    Article  ADS  Google Scholar 

  • M.J. Jongerius, A.J. Ras and Q.H. Vrehen, 1984, Optogalvanic detection of acoustic resonances in a high-pressure sodium discharge, J. Appl. Phys. 55: 2685.

    Article  ADS  Google Scholar 

  • P. Kruit and F.H. Read, 1983, Magnetic field paralleliser for 2π electron-spectrometer and electron-image magnifier, J. Phys. E 16: 313.

    Article  ADS  Google Scholar 

  • A.H. Kung, T. Trickl, N.A. Gershenfeld and Y.T. Lee, 1988, State-selective detection of H2 by 1+1 REMPI via the C1IIu (v’=0, J’) states, Chem. Phys. Letters 144: 427.

    Article  ADS  Google Scholar 

  • R.H. Lehmberg, A.J. Schmitt and S.E. Bodner, 1987, Theory of induced spatial incoherence, J. Appl. Phys. 62: 2680.

    Article  ADS  Google Scholar 

  • A.L. Lompré, G. Manfray, C. Manus, J. Thébault, 1977, Multiphoton ionization of rare gases by a tunable-wavelength 30-psec laser pulse at 1.06 μ.m, Phys. Rev. A 15: 1604.

    Article  Google Scholar 

  • E.E. Marinero, C.T. Rettner and R.N. Zare, 1982, Quantum-state-specific detection of molecular hydrogen by three-photon ionization, Phys. Rev. Letters 48: 1323.

    Article  ADS  Google Scholar 

  • F.J. Northrup, J.C. Polanyi, S.C. Wallace and J.M. Williamson, 1984, VUV laser-induced fluorescence of molecular hydrogen, Chem. Phys. Letters 105: 34.

    Article  ADS  Google Scholar 

  • M. Pealat, J.P.E. Taran, M. Bacal and F. Hillion, 1985, Rovibrational molecular populations, atoms and negative ions in H2 and D2 magnetic multicusp discharges, J. Chem. Phys. 82: 4943; M. Pealat, J.P.E. Taran, J. Taillet, M. Bacal and A.M. Bruneteau, 1981, Measurement of vibrational populations in low-pressure hydrogen plasma by coherent anti-Stokes Raman scattering, J. Appl. Phys. 52: 2687.

    Google Scholar 

  • S.T. Pratt, P.M. Dehmer and J.L. Dehmer, 1983, Resonant multiphoton ionization of H2 via the B 1Σu, v=7, J=2 and 4 levels with photoelectron energy analysis, J. Chem. Phys. 78: 4315; 1984, Photoionization of excited molecular states, H2 C1IIu *, Chem. Phys. Letters 105: 28.

    Google Scholar 

  • D.S. Robie, L.E. Jusinski, W.K. Bischel and W. Huo, 1989, Generation of highly vibrationally excited H2 and detection by 2+1 resonantly enhanced multiphoton ionization, submitted to Chem. Phys. Letters.

    Google Scholar 

  • H. Rottke and K.H. Welge, 1983, State-selective resonant excitation-ionization of H2 with tunable VUV laser light, Chem. Phys. Letters 99: 456.

    Article  ADS  Google Scholar 

  • J. Sheffield, 1975, “Plasma Scattering of Electromagnetic Radiation”, Academic Press, New York.

    Google Scholar 

  • D. Short and S. Skupsky, to be published.

    Google Scholar 

  • F. Skiff, F. Anderegg, T.N. Good, P.J. Paris, M.Q. Tran, N. Rynn and R.A. Stern, 1988, Conservation laws and transport in Hamiltonian chaos, Phys. Rev. Letters 61: 2034.

    Article  ADS  Google Scholar 

  • R.A. Stern, D.N. Hill and N. Rynn, 1983, Direct ion-transport measurement by optical tagging, Phys. Letters A 93: 127.

    Article  ADS  Google Scholar 

  • G.C. Stutzin, A.T. Young, A.S. Schlachter, K.N. Leung and W.B. Kunkel, 1989, In-situ measurement of rovibrational populations of H2 ground electronic state in a plasma by VUV laser absorption, Chem. Phys. Letters 155: 475.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hopman, H.J. (1990). Laser Diagnostics of a Hydrogen Discharge. In: Capitelli, M., Bardsley, J.N. (eds) Nonequilibrium Processes in Partially Ionized Gases. NATO ASI Series, vol 220. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3780-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3780-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6685-0

  • Online ISBN: 978-1-4615-3780-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics