Skip to main content

A Nonthermodynamic Formalism for Biological Information Systems: Hierarchical Lacunarity in Partition Size of Intermittency

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 260))

Abstract

Generally, the thermodynamic formalism for dynamical systems, the study of nonlinear flows and/or their maps (the first transformed into the second by a Poincaré surface of section) involves modeling them using a simpler symbolic system and them applying measure theoretic tools from abstract ergodic theory and statistical mechanics to their analyses. (Kolmogorov, 1956; Sinai, 1972; Bowen, 1975; Ruelle, 1978). genotypes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldi, V., Eckmann, J-P., and Ruelle, D., 1990, Resonances for intermittent systems, Nonlinearitv (preprint).

    Google Scholar 

  • Bowen, R., 1975, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Math. # 470.

    Google Scholar 

  • Daniels, G. R., and Deininger, P. R., 1985, Repeat sequence families derived from mammalian tRNA genes, Nature 317:819–822.

    Article  PubMed  CAS  Google Scholar 

  • Erdös, P., and Renyi, A., 1970, On a new law of large numbers.

    Google Scholar 

  • Feller, W., 1968, “An Introduction to Probability Theory and Its Applications,” Wiley, New York, pp 114–128.

    Google Scholar 

  • Gillespie, J. H., 1986, Natural selection and the molecular clock, Mal. Biol. Eval. 3:138–155.

    CAS  Google Scholar 

  • Jukes, T. H., and Holmquist, R., 1972, Estimation of evolutionary changes in certain homologous polypeptide chains, J. Mal. Biol. 64:163–179.

    Article  CAS  Google Scholar 

  • Katok, A., 1980, Lyapomov exponents, entropy, and periodic orbits for diffeomorphisms, Publ. Math. I.H.E.S. 51:137–173.

    Google Scholar 

  • Kolmogorov, A. N., 1956, A general theory of dynamical systems and classical mechanics, in: “Foundations of Mechanics,” R. Abraham and J. Marsden, eds., Benjamin, New York, 1967.

    Google Scholar 

  • Koslow, S., Mandell, A. J., and Shlesinger, M., 1987, Perspectives in biological dynamics and theoretical medicine, Proc. N. Y. Acad. Sci. 504:1–313.

    Article  Google Scholar 

  • Mandell, A. J., and Kelso, J. A. S., 1990, Neurobiological coding in nonuniform times, in: “Essays on Classical and Quantum Dynamics,” J. A. Ellison and H. Uberall, eds., Gordon & Beach, New York.

    Google Scholar 

  • Mandell, A. J., and Selz, K. A., 1990, Heterochrony as a generalizable principle in biological dynamics, in: “Propagation of Correlations in Constrained Systems and Biology,” E. Stanley and N. Ostrowsky, eds., Plenum, New York, in press.

    Google Scholar 

  • Manneville, P., and Pomeau, Y., 1980, Different ways to turbulence in dissipative dynamical systems, Physica 10:219–227.

    Google Scholar 

  • Manning, A., 1981, A relation between Lyapomov exponents, Hausdorff dimension and entropy, Ergodic Theory Dynamical Systems, 1:451–459

    Article  Google Scholar 

  • Maruyama, T., and Kimura, M., 1980, Genetic variability and effective population size when local extinction and recolonization of subpopulations are frequent, Proc. Nat. Acad. Sci. U.S.A. 77:6710–6714.

    Article  CAS  Google Scholar 

  • Ornstein, D. S., 1989, Ergodic theory, randomness and chaos, Science 243:182–187.

    Article  PubMed  CAS  Google Scholar 

  • Osledec, V. I., 1968, A multiplicative ergodic theorem. Lyapomov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc. 19:197–231.

    Google Scholar 

  • Pesin, Ya. B., 1976, Invariant manifold families which correspond to nonvanishing characteristic exponents, Math. USSR Isv. 10:1261–1305.

    Article  Google Scholar 

  • Pollicott, M., 1986, Meromorphic extensions of generalized zeta functions, Invent. Math. 85:147–164.

    Article  Google Scholar 

  • Renyi, A., 1957, Representation for real numbers and their ergodic properties, Acta Math. Hungar. 8:477–493.

    Article  Google Scholar 

  • Rinzel, J., 1987, A formal classification of bursting mechanisms in excitable systems, Lecture Notes Biomath. 71:267–281.

    Article  Google Scholar 

  • Rosenblatt, M., 1987, Some models exhibiting non—Gaussian intermittency, IEEE Trans. Inform. Theory IT-33:258–262.

    Article  Google Scholar 

  • Ruelle, D., 1989, “Chaotic Evolution and Strange Attractors,” Cambridge Univ. Press, Cambridge.

    Book  Google Scholar 

  • Ruelle, D., 1990, Comments at Joel L. Lebowitz’s 60th birthday, Rutgers, N.J.

    Google Scholar 

  • Ruelle, D., 1978, “Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics,” Addison—Wesley, New York.

    Google Scholar 

  • Ruelle, D., 1986, Zeta functions for expanding maps and Anosov flows, Invent. Math. 34:231–242.

    Article  Google Scholar 

  • Selz, K. A., and Mandell, A. J., 1990, Kindling exponents, quasi—isomorphisms and “reporting out” by neuron—like microwave popcorn discharge sequences, J. Bif. Chaos 1: in press.

    Google Scholar 

  • Sinai, Ya. G., 1972, Gibbsian measures in ergodic theory, Russian Math. Surveys 27:21–69.

    Article  Google Scholar 

  • Singer, M. F., 1982, SINES and LINES: Highly repeated short and long interspersed sequences in mammalian genomes, Cell 28:433–434.

    Article  PubMed  CAS  Google Scholar 

  • Smale, S., 1967, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73:747–817.

    Article  Google Scholar 

  • Waterman, M. S., Gordon, L., and Arratia, R., 1987, Phase transitions in sequence matches and nucleic acid structure, Proc. Nat. Acad. Sci. U.S.A. 84:1241–1243.

    Article  Google Scholar 

  • Wright, S., 1945, The differential equation of the distribution of gene frequencies, Proc. Nat. Acad. Sci. U.S.A. 31:382–389.

    Article  CAS  Google Scholar 

  • Wright, S., 1931, Evolution in Mendelian populations, Genetics 16:97–159.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mandell, A.J., Selz, K.A. (1991). A Nonthermodynamic Formalism for Biological Information Systems: Hierarchical Lacunarity in Partition Size of Intermittency. In: Babloyantz, A. (eds) Self-Organization, Emerging Properties, and Learning. NATO ASI Series, vol 260. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3778-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3778-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6684-3

  • Online ISBN: 978-1-4615-3778-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics