Skip to main content

The Reduction Activation of Nitroimidazoles; Modification by Oxygen and other Redox-Active Molecules in Cellular Systems

  • Chapter
Selective Activation of Drugs by Redox Processes

Part of the book series: NATO ASI Series ((NSSA,volume 198))

Abstract

The ideal biochemical marker for hypoxic cells1–3 would form adducts with cellular molecules uniformly and irreversibly to various cell types only as a function of oxygen concentration during the drug exposure. Additional useful properties include first, that the adduct formation (binding) be primarily to macromolecules (to allow maximum flexibility with respect to subsequent tissue processing and/or analysis), and secondly that it have some simple functional dependence on drug concentration. Clearly, the oxygen concentration range over which binding changes must be similar to the oxygen-dependent phenomena of interest (e.g. radiation sensitivity which has a half maximal value at about 4 micromolar oxygen4). Finally, the ratio of binding in hypoxia to that in normoxia (‘contrast’) should be as high as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. D. Chapman, Hypoxic sensitizers — implications for radiation therapy. New Eng. J. of Med. 301:1429–1432 (1979).

    Article  CAS  Google Scholar 

  2. R. C. Urtasun, C. J. Koch, A. J. Franko, J. A. Raleigh, and J. D. Chapman, A novel technique for measuring human tissue hypoxia at the cellular level. Br. J. Cancer 54:453–457 (1986).

    Article  PubMed  CAS  Google Scholar 

  3. J. D. Chapman, K. Baer, and J. Lee, Characteristics of the metabolism-induced binding of misonidazole to hypoxic mammalian cells, Cancer Res. 43:1523–1528 (1983).

    PubMed  CAS  Google Scholar 

  4. J. D. Chapman, A. J. Franko, and C. J. Koch, The fraction of hypoxic clonogenic cells in tumor populations, in: Biological Bases and Clinical Implications of Tumor Radioresistance (G. H. Fletcher, C. Nervi, and H. R. Withers, eds.) pp 61–73 Masson Publ. NY (1983).

    Google Scholar 

  5. J. D. Chapman, J. Lee, and B. E. Meeker, Keynote Address: Cellular reduction of nitroimidazole drugs: potential for selective chemotherapy and diagnosis of hypoxic cells, Int. J. Radiat. Oncol. Biol. Phys. 16:911–917 (1989).

    Article  PubMed  CAS  Google Scholar 

  6. A. J. Franko, and C. J. Koch, Binding of misonidazole to V79 spheroids and fragments of Dunning rat prostate and human colon carcinoma in vitro: diffusion of oxygen and reactive metabolites, Int. J. Radiat. Oncol. Biol. Phys. 10:1333–1337 (1984).

    Article  PubMed  CAS  Google Scholar 

  7. A. J. Franko, C. J. Koch, B. M. Garrecht, J. Sharplin, A. Howorko, Oxygen dependence of binding of misonidazole to rodent and human tumors in vitro, Cancer Res. 47:5367–5376 (1987).

    PubMed  CAS  Google Scholar 

  8. C. J. Koch, C. C. Stobbe, and K. A. Baer, Metabolism induced binding of 14C-misonidazole to hypoxic cells: kinetic dependence on oxygen concentration and misonidazole concentration, Int. J. Radiat. Oncol. Biol. Phys. 10:1327–1332 (1984).

    Article  PubMed  CAS  Google Scholar 

  9. L. Hlatky, C. Ring, and R. K. Sachs, Comparison of 3H-misonidazole binding between CHO and 9L cells using the sandwich system, Int. J. Radiat. Oncol. Biol. Phys. 16:943–947 (1989).

    Article  PubMed  CAS  Google Scholar 

  10. G. E. Adams, Hypoxia-mediated drugs for radiation and chemotherapy, Cancer, 48:696–707 (1981).

    Article  PubMed  CAS  Google Scholar 

  11. J. E. Biaglow, M. E. Varnes, C. J. Koch, and R. Sridhar, Metabolic activation of carcinogenic nitro-compounds to oxygen reactive intermediates, in: Free Radicals and Cancer (R. E. Floyd, ed.) pp 441–502, Marcell Deckker (1981).

    Google Scholar 

  12. J. M. Brown, Radiosensitizers: rational and potential, Cancer Treat. Res. 65:95–102 (1981).

    CAS  Google Scholar 

  13. J. M. Brown, N. Y. Yu, D. M. Brown, and W. W. Lee, SR-2508: a 2-nitroimidazole amide which should be superior to misonidazole as a radiosensitizer for clinical use, Int. J. Radiat. Oncol. Biol. Phys. 7:695–703 (1981).

    Article  PubMed  CAS  Google Scholar 

  14. E. A. Bump, N. Y. Yu, and J. M. Brown, Role of glutathione in the hypoxic cell cytotoxicity of misonidazole, Cancer Res. 43:997–1002 (1983).

    PubMed  CAS  Google Scholar 

  15. E. J. Hall, M. Astor, J. Biaglow, and J. C. Parham, The enhanced sensitivity of mammalian cells to killing by X-rays after prolonged exposure to several nitroimidazoles, Int. J. Radiat. Oncol. Biol. Phys. 8:447–452 (1982).

    Article  PubMed  CAS  Google Scholar 

  16. E. J. Hall and J. E. Biaglow, Ro-07-0582 as a radiosensitizer and cytotoxic agent, Int. J. Radiat. Oncol. Biol. Phys. 3:521–530 (1977).

    Article  Google Scholar 

  17. C. J. Koch and R. L. Howell, Misonidazole: Inter-related factors affecting cytotoxicity, Int. J. of Radiat. Oncol. Biol. Phys. 8:693–696 (1982).

    Article  CAS  Google Scholar 

  18. C. J. Koch, C. C. Stobbe and K. A. Baer, Radiosensitisation by MISO as a function of concentrations of endogenous glutothione are exogenous phials: III) Measurement of intracellular protector concentrations, Int. J. Radiat. Oncol. Biol. Phys. 12:1151–1155 (1986).

    Article  PubMed  CAS  Google Scholar 

  19. H. B. Michaels, E. C. Peterson, C. C. Ling, and E. R. Epp, Combined effects of misonidazole radiosensitization and hypoxic cell toxicity in mammalian cells. Radiat. Res. 88:354–368 (1981).

    Article  PubMed  CAS  Google Scholar 

  20. J. E. Mohindra and A. M. Rauth, Increased killing by metronidazole and nitrofurazone of hypoxic compared to aerobic mammalian cells, Cancer Res. 36:930–936 (1976).

    PubMed  CAS  Google Scholar 

  21. B. A. Moore, B. Palcic, and L. D. Skarsgard, Radiosensitizing and toxic effects of the 2-nitroimidazole Ro-07–0582 in hypoxic mammalian cells, Radiat. Res. 67:459–473, (1976).

    Article  PubMed  CAS  Google Scholar 

  22. R. T. Mulcahy, Effect of oxygen on misonidazole chemosensitization and cytotoxicity in vitro, Cancer Res. 44:4409–4413 (1984).

    PubMed  CAS  Google Scholar 

  23. P. L. Olive, J. S. Rasey, and R. E. Durand, Comparison between the binding of [3H] misonidazole and AF-2 in Chinese hamster V79 spheroids, Radiat. Res. 105:105–114 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. P. L. Olive and R. E. Durand, Fluorescent nitroheterocycles for identifying hypoxic cells, Cancer Res. 43:3276–3280 (1983).

    PubMed  CAS  Google Scholar 

  25. A. M. Rauth, R. A. McClelland, H. B. Michaels, and R. Battistella, The oxygen dependence of the reduction of nitroimidazoles in a radiolytic model system, Int. J. Radiat. Oncol. Biol. Phys. 10:1323–1326 (1984).

    Article  PubMed  CAS  Google Scholar 

  26. M. J. Saunders, S. Dische, P. Anderson, and J. R. Flockhard, The neurotoxicity of misonidazole and its relationship to dose, half-life and concentration in the serum, Br. J. Cancer 37:(Suppl III) 268–270 (1979).

    Google Scholar 

  27. B. R. Smith, J. L. Born, and D. J. Garcia, Influence of hypoxia on the metabolism and excretion of misonidazole by the isolated perfused rat liver - a model system, Biochem. Pharmacol. 10:1609–1612 (1983).

    Article  Google Scholar 

  28. A. R. J. Silver, S. S. McNeil, P. O’Neill, T. C. Jenkins, and I. Ahmed, Induction of DNA strand breaks by reduced nitroimidazoles: Implications for DNA base damage, Biochem. Pharmacol. 35:3923–3928 (1986).

    Article  PubMed  CAS  Google Scholar 

  29. G. G. Miller, J. Ngan-Lee, and J. D. Chapman, Intracellular localization of radioactively labelled misonidazole in EMT-6 tumor cells in vitro, Int. J. Radiat. Oncol. Biol. Phys. 8:741–744 (1982).

    Article  PubMed  CAS  Google Scholar 

  30. Y. C. Taylor and A. M. Rauth, Oxygen tension, cellular respiration and redox state as variables influencing the cytotoxicity of the radiosensitizer misonidazole, Radiat. Res. 91:104–123 (1982).

    Article  PubMed  CAS  Google Scholar 

  31. C. A. Wallen, S. M. Michaelson, and K. T. Wheeler, Evidence for an unconventional radiosensitivity of rat 9L subcutaneous tumors, Radiat. Res. 85:529–541 (1980).

    Article  Google Scholar 

  32. C. J. Koch, A “thin-film” culturing technique allowing rapid gas-liquid equilibration (6 seconds) with no toxicity to mammalian cells, Radiat. Res. 97:434–442 (1984).

    Article  PubMed  CAS  Google Scholar 

  33. R. S. Marshal, C. J. Koch, and A. M. Rauth, Measurement of low levels of oxygen and their effect on respiration in cell suspensions maintained in an open system, Radiat. Res. 108:91–101 (1986).

    Article  Google Scholar 

  34. J. A. Raleigh, A. J. Franko, E. O. Treiber, J. A. Lunt, and P. S. Allen, Covalent binding of a fluorinated 2-nitroimidazole to EMT-6 tumours in Balb/c mice: Detection by F-19 nuclear magnetic resonance at 2.35 T, Int. J. Radiat. Oncol. Biol. Phys. 10: 1337–1340 (1984).

    Article  PubMed  CAS  Google Scholar 

  35. J. A. Raleigh and S. F. Liu, Reductive fragmentation of 2-nitroimidazoles: amines and aldehydes, Int. J. Radiat. Oncol. Biol. Phys. 12:1243–1245 (1986).

    Article  PubMed  CAS  Google Scholar 

  36. J. A. Raleigh, G. G. Miller, A. J. Franko, C. J. Koch, A. F. Fuciarelli, and D. A. Kelley, Fluorescence immunohistochemical detection of hypoxic cells in spheroids and tumours, Br. J. Cancer 56:395–400 (1987).

    Article  PubMed  CAS  Google Scholar 

  37. R. A. McClelland, R. Panicucci, and A. M. Rauth, Electrophilic intermediate in the reactions of 2-(hydroxylaraino) imidazoles. A model for biological effects of reduced nitroimidazoles, J. Amer. Chem. Soc. 107:1762- (1985).

    Article  CAS  Google Scholar 

  38. R. Panicucci, R. A. McClelland, and A. M. Rauth, Stable reduction products of misonidazole, Int. J. Radiat. Oncol. Biol. Phys. 12:1227–1230 (1986).

    Article  PubMed  CAS  Google Scholar 

  39. A. J. Varghese, Glutathione conjugates of misonidazole, Biochem. Biophys. Res. Comm. 112:1013–1020 (1983).

    Article  PubMed  CAS  Google Scholar 

  40. A. J. Varghese and G. F. Whitmore, Binding to cellular macromolecules as a possible mechanism for the cytotoxicity of misonidazole, Cancer Res. 40:2165–2169 (1980).

    PubMed  CAS  Google Scholar 

  41. A. J. Varghese and G. F. Whitmore, Binding of nitroreduction products of misonidazole to nucleic acids and protein, Cancer Clin. Trials 3:43–46 (1980).

    PubMed  CAS  Google Scholar 

  42. D. W. Whillans and G. F. Whitmore, The radiation reduction of misonidazole, Radiat. Res. 86:311- (1981).

    Article  PubMed  CAS  Google Scholar 

  43. T. W. Wong, G. F. Whitmore, and S. Gulyas, Studies on toxicity and radiosensitizing ability of Ro-07-0582 under conditions of prolonged incubation, Radiat. Res. 75:541–555 (1978).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koch, C.J. (1990). The Reduction Activation of Nitroimidazoles; Modification by Oxygen and other Redox-Active Molecules in Cellular Systems. In: Adams, G.E., Breccia, A., Fielden, E.M., Wardman, P. (eds) Selective Activation of Drugs by Redox Processes. NATO ASI Series, vol 198. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3768-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3768-7_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6679-9

  • Online ISBN: 978-1-4615-3768-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics