Skip to main content

Critical Events in the Toxicity of Redox Active Drugs

  • Chapter
Selective Activation of Drugs by Redox Processes

Part of the book series: NATO ASI Series ((NSSA,volume 198))

Abstract

The mechanism of toxicity of redox active compounds such as quinones, bipyridylherbicides and nitrocompounds varies with the compound1. Common to these types of redox active compounds is that they may be enzymatically reduced by one electron reduction catalyzed by the microsomal enzymes NADPH, cyt-P450 reductase and NADH cyt-b5 reductase and the mitochondrial NADH ubiquinone oxidoreductase. The free radical intermediates formed may be reactive by themselves or, depending on their one electron redox potentials, react with molecular oxygen with the resulting formation of superoxide anion radical (\( {O_2}\overline \bullet \)). This process is termed redox cycling. The so formed (\( {O_2}\overline \bullet \)) readily dismutates either enzymatically or nonenzymatically to hydrogen peroxide (H2O2) which in turn, if not metabolized, undergoes heterolytic cleavage in a Fenton-type reaction with the formation of the very reactive hydroxyl radical (·OH). In addition to redox cycling some redox active compounds may react directly with cellular constituents. They may for instance oxidize both pyridine nucleotides and soluble and protein-bound thiols, as well as arylate and alkylate protein and DNA. Many quinones have for instance been shown to readily react with GSH to form GSH-quinone conjugates and with protein thiols to form alkylated proteins2–4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. M. Cohen and M. d’Arcy Doherty, Free radical mediated cell toxicity by redox cycling chemicals, Br. J. Cancer, 55 (suppl. VIII):46 (1987).

    CAS  Google Scholar 

  2. D. Di Monte, D. Ross, G. Bellomo, L. Eklöw and S. Orrenius, Alterations in intracellular thiol homeostasis during the metabolism of menadione by isolate rat hepatocytes, Arch. Biochem. Biophys., 235:334 (1984).

    Article  PubMed  Google Scholar 

  3. D. Ross, H. Thor, P. Moldéus and S. Orrenius, Interaction of menadione (2-methyl-1,4-naphthoquinone) with glutathione, Chem. Biol. Interact., 55:177 (1985).

    Article  PubMed  CAS  Google Scholar 

  4. A. J. Streeter, D. C. Dahlin, S. D. Nelson and T. A. Bailie, The covalent binding of acetaminophen to protein. Evidence for cysteine residues as major sites of arylation in vitro, Chem. Biol. Interact., 48:348 (1984).

    Article  Google Scholar 

  5. M. S. Sandy, P. Moldéus, D. Ross and M. T. Smith, Role of redox cycling and lip peroxidation in bipyridyl herbicide toxicity, Biochem. Pharmacol., 35:3095 (1988).

    Article  Google Scholar 

  6. M. S. Sandy, P. Moldéus, D. Ross and M. T. Smith, Cytotoxicity of the redox cycling compound diquat in isolated hepatocytes: Involvement of hydrogen peroxide and transition metals, Arch. Biochem. Biophvs., 259:29 (1987).

    Article  CAS  Google Scholar 

  7. C. R. Stubberfield and G. M Cohen, Interconversion of NAD(H) to NADP(H). A cellular response to quinone-induced oxidative stress in isolated hepatocytes, Biochem. Pharmacol., 38:2631 (1989).

    Article  PubMed  CAS  Google Scholar 

  8. M. Comporti, Biology of disease: Lipid peroxidation and cellular damage in toxic liver injury, Lab. Invest., 53:599 (1985).

    PubMed  CAS  Google Scholar 

  9. G. Bellomo, F. Mirabelli, D. Di Monte, P. Richelmi, H. Thor, C. Orrenius and S. Orrenius, Formation and reduction of glutathione-protein mixed disulfides during oxidate stress, Biochem. Pharmacol., 36:1313 (1987).

    Article  PubMed  CAS  Google Scholar 

  10. G. Bellomo, H. Thor, F. Mirabelli, P. Richelmi, G. Finardi and S. Orrenius, Alterations in hepatocyte cytoskeleton during the metabolism of quinones, In: Advances in the Biosciences, K. Cheesman and G. Poli, eds., Pergamon Press, Oxford, 76:21 (1989).

    Google Scholar 

  11. P. A. Hyslop, D. B. Hinshaw, W. A. Halsey Jr. et al., Mechanisms of oxidant mediated cell injury: The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellar targets inactivated by hydrogen peroxide, J. Biol. Chem., 263:1665 (1988).

    PubMed  CAS  Google Scholar 

  12. G. Bellomo and S. Orrenius, Altered thiol and calcium homeostasis in oxidative hepatocellular injury, Hepatoloay, 5:876 (1985).

    Article  CAS  Google Scholar 

  13. G. Bellomo, F. Mirabelli, P. Richelmi and S. Orrenius, Critical role of sulfhydryl group(s) in ATP-dependent Ca2+ sequestration by the plasma membrane fraction from rat liver, Febs Lett., 163:136 (1983).

    Article  PubMed  CAS  Google Scholar 

  14. H. Thor, M. T. Smith, P. Hatzell, G. Bellomo, S. A. Jewell and S. Orrenius, The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells, J. Biol. Chem., 257:12419 (1982).

    PubMed  CAS  Google Scholar 

  15. G. A. More, J. P. O’Brien and S. Orrenius, Menadione (2-methyl-1,4-naphthoquinone)-induced Ca2+ release from rat-liver mitochondria is caused by NAD(P)H oxidation, Xenobiotica, 16:873 (1986).

    Article  Google Scholar 

  16. H. Thor, P. Hartzeil, S.-Å. Svensson, S. Orrenius, F. Mirabelli, V. Marinoni and G. Bellomo, On the role of thiol groups in the inhibition of liver microsomal Ca2+-sequestration by toxic agents, Biochem. Pharmacol., 34:3717 (1985).

    Article  PubMed  CAS  Google Scholar 

  17. P. Nicotera, M. Moore, F. Mirabelli, G. Bellomo and S. Orrenius, Inhibition of hepatocyte plasma membrane Ca2+-ATPase activity by menadione metabolism and its restoration by thiols, febs Lett., 181:149 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. J. Chang, J. H. Musser and H. McGregor, Phospholipase A2: Function and pharmacological regulation, Biochem. Pharmacol., 36:2429 (1987).

    Article  PubMed  CAS  Google Scholar 

  19. P. Nicotera, P. Hartzeil, C. Baldi, S.-Å. Svensson, G. Bellomo and S. Orrenius, Cystamine induces toxicity in hepatocytes through the elevation of cytosolic Ca2+ and stimulation of a nonlysosomal proteolytic system, J. Biol. Chem., 261:14628 (1986).

    PubMed  CAS  Google Scholar 

  20. D. J. McConkey, P. Hartzell, P. Nicotera, A. H. Wyllie and S. Orrenius, Stimulation of endogenous endonuclease activity in hepatocytes exposed to oxidative stress, Toxicol. Lett., 42:123 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. I. U. Schraufstatter, P. A. Hyslop, D. B. Hinshaw, R. G. Spragg, L. A. Sklar and C. G. Cochrane, Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly (APP-ribose) polymerase, Proc. Natl. Acad. Sci. USA, 83:4908 (1986).

    Article  PubMed  CAS  Google Scholar 

  22. I. U. Schraufstatter, D. B. Hinshaw, P. A. Hyslop, R. G. Spragg and C. G. Cochrane, Oxidant injury of cells: DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide, J. Clin. Invest., 77:1312 (1986).

    Article  PubMed  CAS  Google Scholar 

  23. C. R. Stubberfield and G. M. Cohen, NAD+ depletion and cytotoxicity in isolated hepatocytes, Biochem. Pharmacol., 37:3967 (1988).

    Article  PubMed  CAS  Google Scholar 

  24. T. Tewey, T. C. Rowe, L. Yang, B. D. Halligan and L. F. Liu, Adriamycin-induced DNA damage is mediated by mammalian topoisomerase 11. Science, 232:466 (1985).

    Google Scholar 

  25. N. Osheroff and L. E. Zechiedrich, Calcium promoted DNA cleavage by eukariotic Topoisoimerase 11: trapping the covalent enzyme DNA complex in an active form, Biochemistry, 26:4304 (1987).

    Google Scholar 

  26. J. M. Harlan and K. S. Callaham, Role of hydrogen peroxide in the neutrophil-mediated release of prostacyclin from cultured endothelial cells, J. Clin. Invest., 74:44 (1984).

    Article  Google Scholar 

  27. R. M. Jackson, D. B. Chandler and J. Fulmer, Production of arachidonic acid metabolites by endothelial cells in hyperoxia, J. Appl. Physiol., 61:584 (1986).

    PubMed  CAS  Google Scholar 

  28. P. H. Sporn, M. Peters-Golden and R. H. Simon, Hydrogen peroxide induced arachidonic acid metabolism in the rat alveolar macrophage, Am. Rev. Respir. Dis., 137:49 (1988).

    Article  PubMed  CAS  Google Scholar 

  29. R. M. Tate, H. G. Morris, W. R. Schroeder and J. E. Repine, Oxygen metabolites stimulate thromboxane production and vasoconstriction in isolated saline-perfused rabbit lungs, J. Clin. Invest., 74:608 (1984).

    Article  PubMed  CAS  Google Scholar 

  30. G. H. Gurtner, A. Knoblauch, P. L. Smith, H. Sies and N. F. Adkinson, Oxidant and lipid-induced pulmonary vasoconstriction mediated by arachidonic acid metabolites, J. Appl. Physiol., 55:949 (1983).

    PubMed  CAS  Google Scholar 

  31. W. Seeger, N. Suttorp, F. Schmidt and A. Neuhof, The glutathione redox cycle as a defense system against hydrogen peroxide induced prostanoid formation and vasoconstriction in rabbit lungs, Am. Rev. Resp. Dis., 133:1029 (1986).

    PubMed  CAS  Google Scholar 

  32. Å. Ryrfeldt, F. Kroll, M. Berggren and P. Moldéus, Hydroperoxide and cigarette smoke induced effects on lung mechanics and glutathione status in rat isolated perfused and ventilated lungs, Life Sciences, 42:1439 (1988).

    Article  PubMed  CAS  Google Scholar 

  33. G. H. Gurtner, I. S. Farrukh, N. F. Adkinson, A. M. Scinto, J. M. Jacobson and J. R. Michael, Role of arachidonate mediators in peroxide-induced lung injury, Am. Rev. Respir. Dis., 136:480 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Atzori, L., Cotgreave, I.A., Moldéus, P. (1990). Critical Events in the Toxicity of Redox Active Drugs. In: Adams, G.E., Breccia, A., Fielden, E.M., Wardman, P. (eds) Selective Activation of Drugs by Redox Processes. NATO ASI Series, vol 198. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3768-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3768-7_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6679-9

  • Online ISBN: 978-1-4615-3768-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics