Skip to main content

Mechanisms of Activation of Mitomycin C and AZQ in Aerobic and Hypoxic Mammalian Cells

  • Chapter
Selective Activation of Drugs by Redox Processes

Part of the book series: NATO ASI Series ((NSSA,volume 198))

Abstract

The use of drugs selectively activated by redox processes has been suggested as a way to deal with radiation resistant hypoxic cells1,2,3, a cell population within solid tumors which may limit tumor control4,5. The rationale for this suggestion is as follows. Solid tumors contain poorly vascularized regions in which cells are present at a range of oxygen concentrations created by the cellular consumption of oxygen as it diffuses from the widely spaced capillaries or by fluctuating blood flow6. A number of electron affinic drugs are preferentially reduced to more active forms in the hypoxic regions because the low levels of oxygen are ineffective in back oxidizing the drug to its less active parent form7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. M. Rauth, Pharmacology of sensitizers: Mechanism studies, Int. J. Radiat. Oncol. Biol. Phys. 10:1293 (1984).

    Article  PubMed  CAS  Google Scholar 

  2. K. A. Kennedy, B. A. Teicher, S. Rockwell, and A. C. Sartorelli, The hypoxic tumor cell: A target for selective cancer chemotheraphy, Biochem. Pharmacol. 29:1 (1980).

    Article  PubMed  CAS  Google Scholar 

  3. A. C. Sartorelli, Therapeutic attack of hypoxic cells of solid tumors: Presidential Address, Cancer Res. 48:775 (1988).

    PubMed  CAS  Google Scholar 

  4. W. Duncan, Exploitation of the oxygen enhancement ratio in clinical practice, Br. Med. Bull. 29:33 (1973).

    PubMed  CAS  Google Scholar 

  5. R. S. Bush, R. D. T. Jenkin, W. E. C. Allt, F. A. Beale, H. Bean, A. J. Dembo, and J. F. Pringle, Definitive evidence for hypoxic cells influencing cure in cancer therapy, Br. J. Cancer. 37 (Suppl. III): 302 (1978).

    Google Scholar 

  6. C. N. Coleman, Modification of radiotherapy by radiosensitizers and cancer chemotherapy agents I. Radiosensitizers, Sem. in Oncology 16:169 (1989).

    CAS  Google Scholar 

  7. R. P. Mason, Free-radical intermediates in the metabolism of toxic chemicals in: “Free Radicals in Biology” Academic Press, New York (1982).

    Google Scholar 

  8. J. M. Brown, The mechanisms of cytotoxicity and chemo-sensitization by misonidazole and other nitroimidazoles, Int. J. Radiat. Oncol. Biol. Phys. 8:675 (1982).

    Article  PubMed  CAS  Google Scholar 

  9. G. F. Whitmore, and A. J. Varghese, The biological properties of reduced nitroheterocyclics and possible underlying biochemical mechanisms, Biochem. Pharmacol. 35:97 (1986).

    Article  PubMed  CAS  Google Scholar 

  10. S. R. Keyes, D. C. Heimbrook, P. M. Fracasso, S. Rockwell, S. G. Slegar, and A. C. Sartorelli, Chemotherapeutic attack of hypoxic tumor cells by the bioreductive alkylating agent mitomycin C, in: Adv. Enz. Reg. 23:291 (1985).

    Article  CAS  Google Scholar 

  11. A. J. Lin, L. A. Cosby, C. W. Shansky, and A. C. Sartorelli, Potential bioreductive alkylating agents I. Benzoquinone derivatives, J. Med. Chem. 15:1247 (1972).

    Article  PubMed  CAS  Google Scholar 

  12. E. M. Zeman, J. M. Brown, M. J. Lemmon, V. K. Hirst, and W. W. Lee, SR4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells, Int. J. Radiat. Oncol. Biol. Phys. 12:1239 (1986).

    Article  PubMed  CAS  Google Scholar 

  13. K. L. Laderoute, P. Wardman, and A. M. Rauth, Molecular mechanisms for the hypoxia-dependent activation of 3-amino-1,2,4-benzotriazine-1,4-dioxide (SR4233), Biochem. Pharmacol. 37:1487 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. M. M. Mossoba, M. Alizadeh, and P. L. Gutierrez, Mechanism for the reductive activation of diaziquone, J. Pharm. Sci. 74:1249 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. L. Szmigiero, L. C. Erickson, R. A. Ewig, and K. W. Kohn, DNA Strand scission and cross-linking by diaziridinylbenzoquinone (Diaziquone) in human cells and relation to cell killing, Cancer Res. 44:4447 (1984).

    PubMed  CAS  Google Scholar 

  16. C. L. King, S-K. Wong, and T. L. Loo, Alkylation of DNA by the new antitumor agent 3,6-diaziridinyl-2,5-carboethoxyamino-benzoquinone (AZQ), Eur. J. Cancer Clin. Oncol. 20:261 (1984).

    Article  PubMed  CAS  Google Scholar 

  17. G. Powis, Free radical formation by antitumor quinones, Free Radical Biol. and Med. 6:63 (1989).

    Article  CAS  Google Scholar 

  18. M. C. Paterson, M. V. Middlestadt, M. Weinfeld, R. Muzoyan, and N. E. Gentner, Human cancer-prone disorders, abnormal carcinogen response and defective DNA metabolism, in: Radiation Carcinogenesis and DNA Alterations, W. F. Burns, A. C. Upton, and G. Silini, eds., Plenum Press, New York, (1986).

    Google Scholar 

  19. R. S. Marshall, M. C. Paterson, and A. M. Rauth, Deficient activation by a human cell strain leads to mitomycin resistance under aerobic but not hypoxic conditions, Br. J. Cancer 59:341 (1989).

    Article  PubMed  CAS  Google Scholar 

  20. R. S. Marshall, and A. M. Rauth, Oxygen and exposure kinetics as factors influencing the cytotoxicity of porfiromycin, a mitomycin C analogue, in Chinese hamster ovary cells, Cancer Res. 48:5655 (1988).

    PubMed  CAS  Google Scholar 

  21. R. S. Marshall, and A. M. Rauth, Modification of the cytotoxic activity of mitomycin C by oxygen and ascorbic acid in Chinese hamster ovary cells and a repair deficient mutant, Cancer Res. 46:2709 (1986).

    PubMed  CAS  Google Scholar 

  22. P. J. O’Brien,, H. K. Kaul, and A. M. Rauth, Mechanisra(s) of diaziquone (AZQ) cytotoxicity in cultured CHO cells, to be published. Cancer Res. March (1990).

    Google Scholar 

  23. D. W. Whillans, and A. M. Rauth, An experimental and analytical study of oxygen depletion in stirred cell suspensions, Radiat. Res. 84:97 (1980).

    Article  PubMed  CAS  Google Scholar 

  24. K. A. Kennedy, S. Rockwell, and A. C. Sartorelli, Preferential activation of mitomycin C to cytotoxic metabolites by hypoxic tumor cells, Cancer Res. 40:2356 (1980).

    PubMed  CAS  Google Scholar 

  25. A. M. Rauth, J. K. Mohindra, and I. F. Tannock, Activity of mitomycin C for aerobic and hypoxic cells in vitro and in vivo. Cancer Res. 43:4154 (1983).

    PubMed  CAS  Google Scholar 

  26. L. Szmigiero, and K. W. Kohn, Mechanisms of DNA strand breakage and interstrand cross-linking by diaziridinylbenzoquinone (Diaziquone) in isolated nuclei from human cells, Cancer Res. 44:4453 (1984).

    PubMed  CAS  Google Scholar 

  27. P. Wardman, The use of nitroaromatic compounds as hypoxic cell radiosensitizers, Curr. Topics Rad. Res. Quart. 11:347 (1977).

    CAS  Google Scholar 

  28. L. Ernster, DT-diaphorase: A historical review, Chemica Scripta 27A:1 (1987).

    CAS  Google Scholar 

  29. R. S. Marshall,, M. C. Paterson, and A. M. Rauth, Studies on the mechanism of resistance to mitomycin compounds in a human cell strain derived from a cancer prone individual. In preparation.

    Google Scholar 

  30. A. M. Dulhanty, M. Li, and G. F. Whitmore, Isolation of Chinese hamster ovary cell mutants deficient in excision repair and mitomycin C bioactivation, Cancer Res. 49:117 (1989).

    PubMed  CAS  Google Scholar 

  31. A. Begleiter, M. Leith, G. McClarty, S. Beenken, G. J. Goldenberg, and J. A. Wright, Characterization of L5178Y murine lymphoblasts resistant to quinone antitumor agents, Cancer Res. 48:1727 (1988).

    PubMed  CAS  Google Scholar 

  32. A. Begleiter, E. Robotham, G. Lacey, and M. K. Leith, Increased sensitivity of quinone resistant cells to mitomycin C, Cancer Letters 45: 173 (1989).

    Article  PubMed  CAS  Google Scholar 

  33. D. Seigel, D. Y. Pacheco, N. W. Gibson, and D. Ross, Mechanism of cytotoxicity associated with two electron reduction of 2,5-diaziridinyl-3,6,-bis (carboethoxyamino)-1,4-benzoquinone in human colon carcinoma cells: Role of DT-diaphorase, Proc. Am. Assoc. Cancer Res. 30:558 (1989).

    Google Scholar 

  34. P. Workman, M. I. Walton, G. Powis, and J. J. Schlager, Questionable role for DT-diaphorase in mitomycin C resistance, but a target for novel bioreductive drugs? Br. J. Cancer 60:800 (1989).

    Article  PubMed  CAS  Google Scholar 

  35. J. J. Schlager, and G. Powis, The effect of smoking on human cytosolic DT-diaphorase (DT) (E.C.1.6.99.2) activity in normal and tumor tissues, Proc. Am. Assoc. Cancer Res. 29:8 (1988).

    Google Scholar 

  36. M. J. De Long,, A. B. Sontamaria, P. Talalay, Role of cytochrome P1-450 in the induction of NAD(P)H: quinone reductase in a murine hepatoma line and its mutants, Carcinogenesis 8:1549 (1987).

    Article  PubMed  Google Scholar 

  37. J. B. Weissberg, Y. H. Son, R. J. Papac, C. Sasaki, D. B. Fischer, R. Lawrence, S. Rockwell, A. C. Sartorelli, and J. J. Fischer, Randomized clinical trial of mitomycin C as an adjunct to radiotherapy in head and neck cancer, Int. J. Radiat. Oncol. Biol. Phys. 17:3 (1989).

    Article  PubMed  CAS  Google Scholar 

  38. I. F. Tannock, Toxicity of aziridinylbenzoquinone for aerobic and hypoxic cells of a transplanted mouse mammary tumor and interaction of the drug with radiation and adriamycin, Cancer Res. 43:2059 (1983).

    PubMed  CAS  Google Scholar 

  39. S. De Flora, C. Bennicelli, A. Camoirano, D. Serra, and P. Hochstein, Influence of DT-diaphorase on the mutagenicity of organic and inorganic compounds, Carcinogenesis 9:611 (1988).

    Article  PubMed  Google Scholar 

  40. R. S. Marshall, M. C. Paterson, C. Pickett and A. M. Rauth, DT-diaphorase levels in non-transformed human cell strains derived from members of a cancer-prone family. In preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rauth, A.M., Marshall, R.S. (1990). Mechanisms of Activation of Mitomycin C and AZQ in Aerobic and Hypoxic Mammalian Cells. In: Adams, G.E., Breccia, A., Fielden, E.M., Wardman, P. (eds) Selective Activation of Drugs by Redox Processes. NATO ASI Series, vol 198. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3768-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3768-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6679-9

  • Online ISBN: 978-1-4615-3768-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics