Skip to main content

Natural History of Atherosclerosis

  • Chapter
Atherosclerosis

Part of the book series: Altschul Symposia Series ((ALSS,volume 1))

Abstract

Perhaps the three features most characteristic of atherosclerosis are lipid accumulation, abnormal growth of smooth muscle, and thrombotic occlusion. This review will focus on the role of smooth muscle proliferation in the atherosclerotic process and will attempt to identify key questions relevant to the ultimate conversion of a benign, smooth muscle lesion into a progressive and fatal, vaso-occlusive lesion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parker, F. and Odland, G.F. 1966. A light microscopic, histochemical and electron microscopic study of experimental atherosclerosis in rabbit coronary artery and a comparison with rabbit aorta atherosclerosis. Am. J. Pathol. 48(3): 451–481.

    PubMed  CAS  Google Scholar 

  2. Geer, J.C. 1965. Fine structure of human aortic intimai thickening in fatty streaks. Lab. Invest. 14: 1764–1783.

    PubMed  CAS  Google Scholar 

  3. Movat, H.Z., More, R.H. and Haust, M.D. 1959. The morphologic elements in the early lesions of arteriosclerosis. Am. J. Pathol. 35: 93–101.

    PubMed  CAS  Google Scholar 

  4. Haust, M.D., More, R.H. and Movat, H.Z. 1960. The role of smooth muscle cells in the fibrogenesis of arteriosclerosis. Am. J. Pathol. 37: 377–389.

    PubMed  CAS  Google Scholar 

  5. French, J.E., Jennings, M.A., Poole, J.C.F., Robinson, D.S. and Florey, H. 1962. Intimai changes in the arteries of aging swine. Proc. Rov. Soc. Biol. 158: 24–42.

    Article  Google Scholar 

  6. French, J.E. 1966. Atherosclerosis in relation to the structure and function of the arterial intima, with special reference to the endothelium. Int. Rev. Exp. Pathol. 5: 253–354.

    PubMed  CAS  Google Scholar 

  7. Stary, H.C. 1989. Evolution and progression of atherosclerotic lesions in coronary arteries of children and young adults. Arteriosclerosis 9(1 Suppl): 119–132.

    Google Scholar 

  8. Hassler, O. 1970. The origin of the cells constituting arterial intimai thickening. An experimental autoradiographic study. Lab. Invest. 22: 286–295.

    PubMed  CAS  Google Scholar 

  9. Ross, R. 1986. The pathogenesis of atherosclerosis - an update. N. Engl. J. Med. 314: 488–500.

    Article  PubMed  CAS  Google Scholar 

  10. Stemerman M.B. and Ross, R. 1972. Fibrous plaque formation in primates, an electron microscope study. J. Exp. Med. 136: 769–789.

    Article  PubMed  CAS  Google Scholar 

  11. Schwartz, S.M., Stemerman, M.B. and Benditt, E.P. 1975. The aortic intima. II. Repair of the aortic lining after mechanical denudation. Am. J. Pathol. 81: 15–42.

    PubMed  CAS  Google Scholar 

  12. Friedman, R.J., Stemerman, M.B., Wenz, B., Moore, S., Gauldie, J., Gent, M., Tiell, M.L. and Spaet, T.H. 1977. The effect of thrombocytopenia on experimental atherosclerotic lesion formation in rabbits. Smooth muscle cell proliferation and reendothelialization. J. Clin. Invest. 60: 1191–1201.

    Article  PubMed  CAS  Google Scholar 

  13. Hammacher, A., Hellman, U., Johnsson, A., Ostman, A., Gunnarsson, K., Westermark, B., Wasteson, A. and Heldin, C.H. 1988. A major part of platelet-derived growth factor purified from human platelets is a heterodimer of one A and one B chain. J. Biol. Chem. 263: 16493–16498.

    PubMed  CAS  Google Scholar 

  14. Nister, M., Hammacher, A., Mellström, K., Seigbahn, A., Rönnstrand, L., Westermark, B. and Heldin, C.H. 1985. Arterial smooth muscle cells in primary culture produce a platelet-derived growth factor-like protein. Proc. Natl. Acad. Sci. USA 82: 4418–4422.

    Article  Google Scholar 

  15. Ross, R., Raines, E.W. and Bowen-Pope, D.F. 1986. The biology of platelet-derived growth factor. Cell 46: 155–169.

    Article  PubMed  CAS  Google Scholar 

  16. Doolittle, R.F., Hunkapiller, M.W., Hood, L.E., Aaronson, S.A. and Antoniades, H.N. 1983. Simian sarcoma virus one gene, v-sis, is derived from the gene (or genes encoding a platelet-derived growth factor). Science 221: 275–277.

    Article  PubMed  CAS  Google Scholar 

  17. Waterfield, M.D., Scrace, G.T., Whittle, N., Stroobant, P., Johnsson, A., Wasteson, A., Westermark, B., Heldin, C.H., Huang, J.S. and Deuel, T.F. 1983. Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304: 35–39.

    Article  PubMed  CAS  Google Scholar 

  18. Matsui, T., Heidaran, M., Miki, T., Popescu, N., La Rochelle, W., Kraus, M., Pierce, J. and Aaronson, S. 1989. Isolation of a novel receptor cDNA establishes the existence of two PDGF receptor genes. Science 243: 800–804.

    Article  PubMed  CAS  Google Scholar 

  19. Seifert, R.A., Hart, C.E., Phillips, P.E., Forstrom, J.W., Ross, R., Murray, M.J. and Bowen-Pope, D.F. 1989. Two different subunits associate to create isoform-specific platelet-derived growth factor receptors. J. Biol. Chem. 264: 8771–8778.

    PubMed  CAS  Google Scholar 

  20. Williams, L.T. 1989. Signal transduction by the platelet-derived growth factor receptor. Science 243: 1564–1570.

    Article  PubMed  CAS  Google Scholar 

  21. Kazlauskas, A., Bowen-Pope, D., Seifert, R. and Hart, C.E. 1988. Different effects of homo-and heterodimers of platelet-derived growth factor A and B chains on human and mouse fibroblasts. Embo. J. 7: 3727–3735.

    PubMed  CAS  Google Scholar 

  22. Grönwald, R.G.K., Seifert, R.A. and Bowen-Pope, D.F. 1989. Differential regulation of expression of two platelet-derived growth factor receptor subunits by transforming growth factor-ß. J. Biol. Chem. 264: 8120–8125.

    PubMed  Google Scholar 

  23. Rubin, K., Hansson, G.K., Rönnstrand, L., Claesson-Welsh, L., Fellström, B., Tingström, A., Larsson, E., Kareskog, L., Heldin, C.H, and Terracio, L. 1988. Induction of B-type receptors for platelet-derived growth factor in vascular inflammation: possible implications for development of vascular proliferative lesions. Lancet 1: 1353–1356.

    Article  PubMed  CAS  Google Scholar 

  24. Wilcox, J.N., Smith, K.M., Williams, L.T., Schwartz, S.M. and Gordon, D. 1988. Platelet-derived growth factor mRNA detection in human atherosclerotic plaques by in situ hybridization. J. Clin. Invest. 82: 1134–1143.

    Article  PubMed  CAS  Google Scholar 

  25. Fingerle, J., Johnson, R., Clowes, A.W., Majesky, M.W. and Reidy, M.A. 1989. Role of platelets in smooth muscle cell proliferation and migration after vascular injury in rat carotid artery. Proc. Natl. Acad. Sci. USA 86: 8412–8416.

    Article  PubMed  CAS  Google Scholar 

  26. Clowes, A.W. and Schwartz, S.M. 1985. Significance of quiescent smooth muscle migration in the injured rat carotid artery. Circ. Res. 56: 139–145.

    Article  PubMed  CAS  Google Scholar 

  27. Reidy, M.A., Yoshida, K., Harker, L.A. and Schwartz, S.M. 1986. Vascular injury: quantification of experimental focal endothelial denudation in rats using indium-111-labeled platelets. Arteriosclerosis 6: 305–311.

    Article  PubMed  CAS  Google Scholar 

  28. Imai, H., Werthessen, N.T., Taylor, C.B. and Lee, K.T. 1976. Angiotoxicity and arteriosclerosis due to contaminants of USP-grade cholesterol. Arch. Pathol. Lab. Med. 100: 565–572.

    PubMed  CAS  Google Scholar 

  29. Smith, J.C., Singh, J.P., Lillquist, J.S., Goon, D.S. and Stiles, C.D. 1982. Growth factors adherent to cell substrate are mitogenically active in situ. Nature 296: 154–156.

    Article  PubMed  CAS  Google Scholar 

  30. Gajdusek, C.M. and Schwartz, S.M. 1984. Comparison of intracellular and extracellular mitogen activity. J. Cell Phvsiol. 121: 316–322.

    Article  CAS  Google Scholar 

  31. Blaes, N. and Boissel, J.P. 1983. Growth-stimulating effect of catecholamines on rat aortic smooth muscle cells in culture. J. Cell Physiol. 116: 167–172.

    Article  PubMed  CAS  Google Scholar 

  32. Julius, D., Livelli, T.J., Jessell, T.M. and Axel, R. 1989. Ectopic expression of the serotonin lc receptor and the triggering of malignant transformation. Science 224: 1057–1062.

    Article  Google Scholar 

  33. Gospodarowicz, D., Vlodaysky, I. and Savion, N. 1980. The extracellular matrix and the control of proliferation of vascular endothelial and vascular smooth muscle cells. J. Supramol. Struct. 13: 339–372.

    Article  PubMed  CAS  Google Scholar 

  34. Stavnow, L. and Berg, A.L. 1987. Effects of hypoxia and other injurious stimuli on collagen secretion and intracellular growth stimulating activity of bovine aortic smooth muscle cells in culture. Artery 14: 198–208.

    Google Scholar 

  35. Burgess, W.H., Mehlman, T., Marshak, D.R., Fraser, B.A. and Maciag, T. 1986. Structural evidence that endothelial cell growth factor ß is the precursor of both endothelial cell growth factor a and acidic fibroblast growth factor. Proc. Natl. Acad. Sci. USA 83: 7216–7220.

    Article  PubMed  CAS  Google Scholar 

  36. Lobb, R.R., Harper, J.W. and Fett, J.W. 1986. Purification of heparin-binding growth factors. Analytical Biochemistry 154: 1–14.

    Article  PubMed  CAS  Google Scholar 

  37. Schreiber, A.B., Kenney, J., Kowalski, J., Thomas, K.A., Gimenez-Gallego, G., Rios-Candelore, M., Di Salvo, J., Barritault, D., Courty, J., Courtois, Y., et al. 1985. A unique family of endothelial cell polypeptide mitogens: the antigenic and receptor cross-reactivity of bovine endothelial cell growth factor, brain-derived acidic fibroblast growth factor, and eye-derived growth factor-II. J. Cell Biol. 101: 1623–1626.

    Article  PubMed  CAS  Google Scholar 

  38. Gospodarowicz, D., Ferrara, N., Haaparanta, T. and Neufeld, G. 1988. Basic fibroblast growth factor: expression in cultured bovine vascular smooth muscle cells. Eur. J. Cell Biol. 46: 144–51.

    PubMed  CAS  Google Scholar 

  39. Winkles, J.A., Friesel, R., Burgess, W.H., Howk, R., Mehlman, T., Weinstein, R. and Maciag, T. 1989. Human vascular smooth muscle cells both express and respond to heparin-binding growth factor I (endothelial cell growth factor). Proc. Natl. Acad. Sci. USA 84: 7124–7128.

    Article  Google Scholar 

  40. Oka, Y. and Orth, D.N. 1983. Human plasma epidermal growth factor/betaurogastrone is associated with blood platelets. J. Clin. Invest. 72: 249–259.

    Article  PubMed  CAS  Google Scholar 

  41. Bhargava, G., Rifas, L. and Makman, M.H. 1979. Presence of epidermal growth factor receptors and influence of epidermal growth factor on proliferation and aging in cultured smooth muscle cells. J. Cell Physiol. 100: 365–374.

    Article  PubMed  CAS  Google Scholar 

  42. Berk, B.C., Brock, T.A., Webb, R.C., Taubman, M.B., Atkinson, W.J., Gimbrone, M.A. and Alexander, R.W. 1985. Epidermal growth factor, a vascular smooth muscle mitogen, induces rat aortic contraction. J. Clin. Invest. 75: 1083–1086.

    Article  PubMed  CAS  Google Scholar 

  43. Assoian, R.K. and Sporn, M.B. 1986. Type beta transforming growth factor in human platelets: release during platelet degranulation and action on vascular smooth muscle cells. J. Cell Biol. 102: 1217–1223.

    Article  PubMed  CAS  Google Scholar 

  44. Ignotz, R.A. and Massague, J. 1987. Cell adhesion protein receptors as targets for transforming growth factor-beta action. Cell 51: 189–197.

    Article  PubMed  CAS  Google Scholar 

  45. Antonelli-Orlidge, A., Saunders, K.B., Smith, S.R. and D’Amore, P.A. 1989. An activated form of transforming growth factor-beta is produced by cocultures of endothelial cells and pericytes. Proc. Natl. Acad. Sci. USA 86: 4544–4548.

    Article  PubMed  CAS  Google Scholar 

  46. Brown, B.G., Mahley, R. and Assmann, G. 1976. Swine aortic smooth muscle in tissue culture. Some effects of purified swine lipoproteins on cell growth and morphology. Circ. Res. 39: 415–424.

    Article  PubMed  CAS  Google Scholar 

  47. Chen, J.K., Hoshi, H., McClure, D.B. and McKeehan, W.L. 1986. Role of lipoproteins in growth of human adult arterial endothelial and smooth muscle cells in low lipoprotein-deficient serum. J. Cell Physiol. 129: 207–214.

    Article  PubMed  CAS  Google Scholar 

  48. Cox, D.C., Comai, K. and Goldstein, A.L. 1988. Effects of cholesterol and 25hydroxycholesterol on smooth muscle cell and endothelial cell growth. Lipids 23: 85–88.

    Article  PubMed  CAS  Google Scholar 

  49. Daoud, A.S., Fritz, K.E. and Jarmolych, J. 1970. Increased DNA synthesis in aortic explants from swine fed a high-cholesterol diet. Exp. Molec. Pathol. 13: 377–384.

    Article  CAS  Google Scholar 

  50. Florentin, R.A., Choi, B.H., Lee, K.T. and Thomas, W.A. 1969. Stimulation of DNA synthesis and cell division in vitro by serum from cholesterol fed swine. J. Cell Biol. 41: 641–645.

    Article  PubMed  CAS  Google Scholar 

  51. Gospodarowicz, D., Hirabayashi, K., Giguere, L. and Tauber, J.P. 1981. Factors controlling the proliferative rate, final cell density, and life span of bovine vascular smooth muscle cells in culture. J. Cell Biol. 89: 568–578.

    Article  PubMed  CAS  Google Scholar 

  52. Libby, P., Miao, P., Ordovas, J.M. and Schaefer, E.J. 1985. Lipoproteins increase growth of mitogen-stimulated arterial smooth muscle cells. J. Cell Physiol. 124: 1–8.

    Article  PubMed  CAS  Google Scholar 

  53. Pietila, K. 1982. Long-term effect of hyperlipidemic serum on the synthesis of glycosaminoglycans and on the rate of growth of rabbit aortic smooth muscle cells in culture. Atherosclerosis 42: 67–75.

    Article  PubMed  CAS  Google Scholar 

  54. Saito, Y., Bujo, H., Morisaki, N., Shirai, K. and Yoshida, S. 1988. Proliferation and LDL binding of cultured intimal smooth muscle cells from rabbits. Atherosclerosis 69: 161–164.

    Article  PubMed  CAS  Google Scholar 

  55. Mitsumata, M., Fischer-Dzoga, K., Getz, G.S. and Wissler, R.W. 1988. Sequential change of DNA synthesis in cultured aortic smooth muscle cells stimulated by hyperlipidemic serum. Exp. Mol. Pathol. 48: 24–36.

    Article  PubMed  CAS  Google Scholar 

  56. Clemmons, D.R. 1985. Exposure to platelet-derived growth factor modulates the porcine aortic smooth muscle cell response to somatomedin-C. Endocrinology 117:77–83.

    Article  PubMed  CAS  Google Scholar 

  57. Okeefe, E.J. and Pledger, W.J. 1983. A model of cell cycle control: sequential events regulated by growth factors. Mol. Cell Endocrinol. 31: 167–186.

    Article  CAS  Google Scholar 

  58. Russell, W.E., Van Wyk, J.J. and Pledger, W.J. 1984. Inhibition of the mitogenic effects of plasma by a monoclonal antibody to somatomedin C. Proc. Natl. Acad. Sci. USA 81: 2389–2392.

    Article  PubMed  CAS  Google Scholar 

  59. Singh, J.P., Chaikin, M.A., Pledger, W.J., Scher, C.D., Stiles, C.D. 1983. Persistence of the mitogenic response to platelet-derived growth factor (competence) does not reflect a long-term interaction between the growth factor and the target cell. J Cell Biol. 96: 1497–1502.

    Article  PubMed  CAS  Google Scholar 

  60. Clemmons, D.R., Van Wyk J.J. 1985. Evidence for a functional role of endogenously produced somatomedinlike peptides in the regulation of DNA synthesis in cultured human fibroblasts and porcine smooth muscle cells. J. Clin. Invest. 75: 1914–1918.

    Article  PubMed  CAS  Google Scholar 

  61. Majack, R.A., Goodman, L.V. and Dixit, V.M. 1988. Cell surface thrombospondin is functionally essential for vascular smooth muscle cell proliferation. J. Cell Biol. 106: 415–422.

    Article  PubMed  CAS  Google Scholar 

  62. Schwartz, S.M., Campbell, G.R. and Campbell, J.H. 1986. Replication of smooth muscle cells in vascular disease. Circ. Res. 58: 427–444.

    Article  PubMed  CAS  Google Scholar 

  63. Campbell, G.R., Campbell, J.H., Maderson, J.A., Horrigan, S., Rennick, R.E. 1988. Arterial smooth muscle. A multifunctional mesenchymal cell. Arch. Pathol. Lab. Med. 112: 977–986.

    PubMed  CAS  Google Scholar 

  64. Thyberg, J. and Fredholm, B.B. 1987. Modulation of arterial smooth muscle cells from contractile to synthetic phenotype requires induction of ornithine decarboxylase activity and polyamine synthesis. Experimental Cell Research 170: 153–159.

    Article  PubMed  CAS  Google Scholar 

  65. Hedin, U. and Thyberg, J. 1987. Plasma fibronectin promotes modulation of arterial smooth-muscle cells from contractile to synthetic phenotype. Differentiation 33: 239–346.

    Article  PubMed  CAS  Google Scholar 

  66. Thyberg, J., Nilsson, J., Palmberg, L. and Sjolund, M. 1985. Adult human arterial smooth muscle cells in primary culture. Modulation from contractile to synthetic phenotype. Cell Tissue Res. 239(1): 69–74.

    Article  PubMed  CAS  Google Scholar 

  67. Nilsson, J. 1987. Smooth muscle cells in the atherosclerotic process. Acta Med. Scand. Suppl. 715: 25–31.

    PubMed  CAS  Google Scholar 

  68. Blank, R.S., Thompson, M.M. and Owens, G.K. 1988. Cell cycle versus density dependence of smooth muscle alpha actin expression in cultured rat aortic smooth muscle cells. J. Cell Biol. 107(1): 299–306.

    Article  PubMed  CAS  Google Scholar 

  69. Skalli, O., Bloom, W.S., Ropraz, P., Azzarone, B. and Gabbiani, G. 1986. Cytoskeletal remodeling of rat aortic smooth muscle cells in vitro: relationships to culture conditions and analogies to in vivo situations. J. Submicrosc. Cvtol. 18(3): 481–93.

    CAS  Google Scholar 

  70. Fry, D.L. 1972. Responses of the arterial wall to certain physical factors. Ciba Found. Svmp. 12: 93–120.

    Google Scholar 

  71. Nerem, R.M. and Cornhill, J.F. 1980. The role of fluid mechanics in atherogenesis. J. Biomechanical Engineering 102: 181–189.

    Article  CAS  Google Scholar 

  72. Walker, L.N., Reidy, M.A. and Bowyer, D.E. 1986. Morphology and cell kinetics of fatty streak lesion formation in the hypercholesterolemic rabbit. Am. J. Pathol. 125: 450–459.

    PubMed  CAS  Google Scholar 

  73. Wolinsky, H. and Glagov, S. 1967. A lamellar unit of aortic medial structure and function in mammals. Circ. Res. 20: 99–101.

    Article  PubMed  CAS  Google Scholar 

  74. Looker, T. and Berry, C.L. 1972. The growth and development of the rat aorta. II. Changes in nucleic acid and scleroprotein content. J. Anat. 113: 17–34.

    PubMed  CAS  Google Scholar 

  75. Olivetti, G., Anversa, P., Melissari, M. and Loud, A. 1980. Morphometry of medial hypertrophy in the rat thoracic aorta. Lab. Invest. 42: 559–565.

    PubMed  CAS  Google Scholar 

  76. Dilley, R.J. and Schwartz, S.M. 1989. Vascular remodeling in the growth hormone transgenic mouse. Circ. Res. 65: 1233–1240.

    Article  PubMed  CAS  Google Scholar 

  77. Eccleston-Joyner, C.A. and Gray, S.D. 1988. Arterial hypertrophy in the fetal and neonatal spontaneously hypertensive rat. Hypertension 12: 513–518.

    Article  PubMed  CAS  Google Scholar 

  78. Gray, S.D. 1982. Anatomical and physiological aspects of cardiovascular function in Wistar-Kyoto and spontaneously hypertensive rats at birth. Clin. Sci. 63(Suppl. 8): 383s-385s.

    Google Scholar 

  79. Blatt, H.J. 1973. Uber die Entwicklung der Coronararterien bei der Ratte Licht-und elektronenmikroskopische Untersuchungen. Z Anat Entwicklungsgesch 142: 53–64.

    Article  PubMed  CAS  Google Scholar 

  80. Gonzalez-Crussi, F. 1971. Vasculogenesis in the chick embryo. An ultrasound study. Am. J. Anat. 130: 441–460.

    Article  PubMed  CAS  Google Scholar 

  81. Manasek, F.J. 1971. The ultrastructure of embryonic myocardial blood vessels. Dev. Biol. 26: 42–54.

    Article  PubMed  CAS  Google Scholar 

  82. Nakamura, H. 1988. Electron microscopic study of the prenatal development of the thoracic aorta in the rat. Am. J. Anat. 181: 406–418.

    Article  PubMed  CAS  Google Scholar 

  83. Ruzicka, D and Schwartz, R.J. 1988. Sequential activation of alpha actin genes during avian cardiogenesis: Vascular smooth muscle a-actin gene transcripts mark the onset of cardiac myocyte differentiation. J. Cell Biol. 107: 2575–2586.

    Article  PubMed  CAS  Google Scholar 

  84. Ekblom, P., Sariola, H., Karkinen-Jääskeläinen, M. and Saxén, L. 1982. The origin of the glomerular endothelium. Cell Differentiation 11: 35–39.

    Article  PubMed  CAS  Google Scholar 

  85. Pardanaud, L., Yassine, F. and Dieterlen-Lievre, F. 1989. Relationship between vasculogenesis, angiogenesis and haematopoiesis during avian ontogeny. Development 105: 473–485.

    PubMed  CAS  Google Scholar 

  86. Harris-Hooker, S.A., Gajdusek, C.M., Wight, T.N. and Schwartz, S.M. 1983. Neovascular responses induced by cultured aortic endothelial cells. J. Cell Phvsiol. 114: 302–310.

    Article  CAS  Google Scholar 

  87. Zerwes, H.G. and Risau, W. 1987. Polarized secretion of a platelet-derived growth factor like chemotactic factor by endothelial cells in vitro. J. Cell Biol. 105: 2037–2041.

    Article  PubMed  CAS  Google Scholar 

  88. Davies, A.M., Bandtlow, C., Heumann, R., Korsching, S., Rohrer, H. and Thoenen, H. 1987. Timing and site of nerve growth factor synthesis in developing skin in relation to innervation and expression of the receptor. Nature 326: 353–357.

    Article  PubMed  CAS  Google Scholar 

  89. Hayashi, Y. and Miki, N. 1985. Purification and characterization of a neurite outgrowth factor from chicken gizzard smooth muscle. J. Biol. Chem. 15: 14269–14278.

    Google Scholar 

  90. Rawdon, B.B. and Dockray, G.J. 1983. Directional growth of sympathetic nerve fibres in vitro towards enteric smooth muscle and heart from mice with congenital aganglionic colon and their normal littermates. Developmental Brain Res. 7: 53–59.

    Article  Google Scholar 

  91. Rush, R.A., Abrahamson, I.K., Murdoch, S.Y., Renton, F.J. and Wilson, P.A. 1986. Increase in neuronotrophic activity during the period of smooth muscle innervation. Int. J. Dev. Neurosci. 4: 483–492.

    Article  PubMed  CAS  Google Scholar 

  92. Southwell, B.R., Chamley-Campbell, J.H. and Campbell, G.R. 1985. Tropic interactions between sympathetic nerves and vascular smooth muscle. J. Auton. Nerv. Svst. 13: 342–354.

    Google Scholar 

  93. Herman, I.M. and D’Amore, P.A. 1985. Microvascular pericytes contain muscle and nonmuscle actins. J. Cell Biol. 101: 43–52.

    Article  PubMed  CAS  Google Scholar 

  94. Moss, N.S. and Benditt, E.P. 1970. Spontaneous and experimentally induced arterial lesions. I. An ultrastructural survey of the normal chicken aorta. Lab. Invest. 22: 166–183.

    PubMed  CAS  Google Scholar 

  95. Moss, N.S. and Benditt, E.P. 1970. The ultrastructure of spontaneous and experimentally induced arterial lesions. II. The spontaneous plaque in the chicken. Lab. Invest. 23: 231–245.

    PubMed  CAS  Google Scholar 

  96. Wight, T.N., Cooke, P.H. and Smith, S.C. 1977. An electron microscopic study of pigeon aorta cell cultures. Cytodifferentiation and intracellular lipid accumulation. Exp. Molec. Pathol. 27: 1–18.

    Article  CAS  Google Scholar 

  97. Gabbiani, G., Gabbiani, F., Heimark, R.L. and Schwartz, S.M. 1984. Organization of actin cytoskeleton during early endothelial regeneration in vitro. J. Cell Sci. 66:39–50.

    PubMed  CAS  Google Scholar 

  98. Kocher, O. and Gabbiani, G. 1984. Cytoskeletal features of normal and atheromatous human arterial smooth muscle cells. Hum. Pathol. 17: 875–880.

    Article  Google Scholar 

  99. Kocher, O. and Gabbiani, G. 1986. Expression of actin mRNAs in rat aortic smooth muscle cells during development, experimental intimai thickening, and culture. Differentiation 32: 245–251.

    Article  PubMed  CAS  Google Scholar 

  100. Jonasson, L., Holm, J., Skalli, O., Gabbiani, G., Bondjers, G. and Hansson, G.K. 1986. Regional accumulations of T cells, macrophages, and and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6: 131–138.

    Article  PubMed  CAS  Google Scholar 

  101. Orekhov, A.N., Ankarpova, I.I., Tertov, V.V., Rudchenko, S.A., Addreeva, E.R., Krushinsky, A.V. and Smirnov, R.N. 1984. Cellular composition of atherosclerotic and uninvolved human aortic subendothelial intima: Light-microscopic study of dissociated aortic cells. Am. J. Pathol. 115: 17–24.

    PubMed  CAS  Google Scholar 

  102. Wilcox, J.N., Smith, K.M., Schwartz, S.M. and Gordon, D. 1989. Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc. Natl. Acad. Sci. 86: 2839–2843.

    Article  PubMed  CAS  Google Scholar 

  103. Gordon, D., Reidy, M.A., Benditt, E.P. and Schwartz, S.M. 1990. Cell proliferation in human coronary arteries. Proc. Natl. Acad. Sci. USA 87: 4600–4604.

    Article  PubMed  CAS  Google Scholar 

  104. Benditt, E.P. and Benditt, J.M. 1973. Evidence for a monoclonal origin of human atherosclerotic plaques. Proc. Natl. Acad. Sci. USA 70(6): 1753–1756.

    Article  PubMed  CAS  Google Scholar 

  105. Pearson, T.A., Wang, A., Solez, K. and Heptinstall, R.H. 1975. Clonal characteristics of fibrous plaques and fatty streaks from human aortas. Am. J. Pathol. 81(2): 379–388.

    PubMed  CAS  Google Scholar 

  106. Schwartz, S.M., Reidy, M.A. and Clowes, A. 1985. Kinetics of atherosclerosis, a stem cell model. Ann. N.Y. Acad. Sci. 454: 292–304.

    Article  PubMed  CAS  Google Scholar 

  107. Stary, J.C. and Strong, J.P. 1976. The fine structure of non-atherosclerotic intimai thickening of developing and of regressing atherosclerotic lesions at the bifurcation of the left coronary artery. Adv. Exp. Med. Biol. 67: 89–108.

    PubMed  CAS  Google Scholar 

  108. Velican, D. and Velican, C. 1976. Intimai thickening in developing coronary arteries and its relevance to atherosclerotic involvement. Atherosclerosis 23: 345–355.

    Article  Google Scholar 

  109. McGill, Jr. H.C. 1984. Persistent problems in the pathogenesis of atherosclerosis. Arteriosclerosis 4: 443–451.

    Article  PubMed  Google Scholar 

  110. Thomas, W.A., Lee, K.T. and Kim, D.N. 1985. Cell population kinetics in atherogenesis. Cell births and losses in intimai cell mass-derived lesions in the abdominal aorta of swine. Ann. N.Y. Acad. Sci. 454: 305–315.

    Article  PubMed  CAS  Google Scholar 

  111. Benditt, E.P. and Gown, A.M. 1980. Atheroma: the artery wall and the environment. Int. Rev. Exp. 21: 55–118.

    CAS  Google Scholar 

  112. Pearson, T.A., Dillman, J.M., Solez, K. and Heptinstall, R.H. 1981. Clonal characteristics of cutaneous scars and implications for atherogenesis. Am. J. Pathol. 102: 49–54.

    PubMed  CAS  Google Scholar 

  113. Pearson, T.A., Dillman, J.M. and Heptinstall, R.H. 1987. Clonal mapping of the human aorta. Relationship of monoclonal characteristics, lesion thickness, and age in normal intima and atherosclerotic lesions. Am. J. Pathol. 126: 33–39.

    PubMed  CAS  Google Scholar 

  114. Lee, K.T., Thomas, W.A., Florentin, R.A., Reiner, J.M. and Lee, W.M. 1976. Evidence for a polyclonal origin and proliferative heterogeneity of atherosclerotic lesions induced by dietary cholesterol in swine. Ann. N.Y. Acad. Sci. 275: 336–347.

    Article  PubMed  CAS  Google Scholar 

  115. Thomas, W.A., Florentin, R.A., Reiner, J.M., Lee, W.M. and Lee, K.T. 1976. Alterations in population dynamics of arterial smooth muscle cell during atherogenesis. IV. Evidence for a polyclonal origin of hypercholesterolemia diet-induced atherosclerotic lesions in young swine. Exp. Mol. Pathol. 24: 244–260.

    Article  PubMed  CAS  Google Scholar 

  116. Thomas, W.A., Reiner, J.M., Florentin, R.A. and Scott, R.F. 1979. Population dynamics of arterial cells during atherogenesis. VIII. Separation of the roles of injury and growth stimulation in early aortic atherogenesis in swine originating in preexisting intimai smooth muscle cell masses. Exp. Mol. Pathol. 31: 124–144.

    Article  PubMed  CAS  Google Scholar 

  117. Lee, K.T., Thomas, W.A., Janakidevi, K., Kroms, M., Reiner, J.M. and Borg, K.Y. 1981. Mosaicism in female hybrid hares heterozygous for glucose-6-phosphate dehydrogenase (G-6-PD): I. General properties of a hybrid hare model with special reference to atherogenesis. Exp. Molec. Path. 34: 191–201.

    Article  PubMed  CAS  Google Scholar 

  118. Webster, W.S., Bishop, S.P. and Geer, J.C. 1974. Experimental aortic intimal thickening. I. Morphology and source of intimal cells. Am. J. Pathol. 76: 245–284.

    PubMed  CAS  Google Scholar 

  119. Keski-Oja, J., Raghow, R., Sawdey, M., Loskutoff, D.J., Postlethwaite, A.E., Kang, A.H. and Moses, H.L. 1988. Regulation of mRNAs for type-1 plasminogen activator inhibitor, fibronectin, and type I procollagen by transforming growth factor-beta. Divergent responses in lung fibroblasts and carcinoma cells. J. Biol. Chem. 263: 3111–3115.

    PubMed  CAS  Google Scholar 

  120. Guyton, J.R. and Karnovsky, M.J. 1979. Smooth muscle cell proliferation in the occluded rat carotid artery: lack of requirement for luminal platelets. Am. J. Pathol. 94: 585–602.

    PubMed  CAS  Google Scholar 

  121. Fingerle, J. and Kraft, T. 1987. The induction of smooth muscle cell proliferation in vitro using an organ culture system. Int-Anaiol. 6: 65–72.

    CAS  Google Scholar 

  122. Schweigerer, L., Neufeld, G., Friedman, J., Abraham, J.A., Fiddes, J.C. and Gospodarowicz, D. 1987. Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Nature 325: 257–259.

    Article  PubMed  CAS  Google Scholar 

  123. Vlodaysky, I., Folkman, J., Sullivan, R., Fridman, R., Ishai-Michaeli, R., Sasse, J. and Klagsbrun, M. 1987. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc. Natl. Acad. Sci. USA 84: 2292–2296.

    Article  Google Scholar 

  124. Vlodaysky, I., Fridman, R., Sullivan, R., Sasse, J. and Klagsbrun, M. 1987. Aortic endothelial cells synthesize basic fibroblast growth factor which remains cell associated and platelet-derived growth factor-like protein which is secreted. J. Cell Phvsiol. 131: 402–408.

    Article  Google Scholar 

  125. Dicorleto, P.E. and Bowen-Pope, D.F. 1983. Cultured endothelial cells produce a platelet-derived growth factor-like protein. Proc. Natl. Acad. Sci. USA 80: 1919–1923.

    Article  PubMed  CAS  Google Scholar 

  126. Dicorleto, P.E. 1984. Cultured endothelial cells produce multiple growth factors for connective tissue cells. Exp. Cell Res. 153: 167–172.

    Article  PubMed  CAS  Google Scholar 

  127. Barrett, T.B., Gajdusek, C.M., Schwartz, S.M., McDougall, J.K. and Benditt, E.P. 1984. Expression of the sis gene by endothelial cells in culture and in vivo. Proc. Natl. Acad. Sci. USA 81: 6772–6774.

    Article  PubMed  CAS  Google Scholar 

  128. Daniel, T.O., Gibbs, V.C., Milfay, D.F., Garovoy, M.R. and Williams, L.T. 1986. Thrombin stimulates c-sis gene expression in microvascular endothelial cells. J. Biol. Chem. 261: 9579–95826.

    PubMed  CAS  Google Scholar 

  129. Daniel, T.O., Gibbs, V.C., Milfay, D.F. and Williams, L.T. 1987. Agents that increase cAMP accumulation block endothelial c-sis induction by thrombin and transforming growth factor-beta. J. Biol. Chem. 262: 11893–11896.

    PubMed  CAS  Google Scholar 

  130. Fox, P.L. and Dicorleto, P.E. 1986. Modified low density lipoproteins suppress production of a platelet-derived growth factor-like protein by cultured endothelial cells. Proc. Natl. Acad. Sci. USA 83: 4774–4778.

    Article  PubMed  CAS  Google Scholar 

  131. Gajdusek, C., Carbon, S., Ross, R., Nawroth, P. and Stern, D. 1986. Activation of coagulation releases endothelial cell mitogens. J. Cell Biol. 103: 419–428.

    Article  PubMed  CAS  Google Scholar 

  132. Jaye, M., McConathy, E., Drohan, W., Tong, B., Deuel, T. and Maciag, T. 1985. Modulation of the sis gene transcript during endothelial cell differentiation in vitro. Science 228: 882–885.

    Article  PubMed  CAS  Google Scholar 

  133. Starksen, N.F., Harsh, 4th G.R., Gibbs, V.C. and Williams, L.T. 1987. Regulated expression of the platelet-derived growth factor A-chain gene in microvascular endothelial cells. J. Biol. Chem. 262: 14381–14384.

    PubMed  CAS  Google Scholar 

  134. Seifert, R.A., Schwartz, S.M. and Bowen-Pope, D.F. 1984. Developmentally regulated production of platelet-derived growth factor-like molecules. Nature 311:669–671.

    Article  PubMed  CAS  Google Scholar 

  135. Libby, P., Warner, S.J., Salmon, R.N. and Birinyi, L.K. 1988. Production of platelet-derived growth factor-like mitogen by smooth-muscle cells from human atheroma. N. Engl. J. Med. 318: 1493–1498.

    Article  PubMed  CAS  Google Scholar 

  136. Majesky, M.W., Benditt, E.P. and Schwartz, S.M. 1988. Expression and developmental control of platelet-derived growth factor A-chain and B-chain/Sis genes in rat aortic smooth muscle cells. Proc. Natl. Acad. Sci. 85: 1524–1528.

    Article  PubMed  CAS  Google Scholar 

  137. Nilsson, J., Sjolund, M., Palmberg, L., Thyberg, J. and Heldin, C.H. 1985. Arterial smooth muscle cells in primary culture produce a platelet-derived growth factor-like protein. Proc. Natl. Acad. Sci. USA 82: 4418–4422.

    Article  PubMed  CAS  Google Scholar 

  138. Walker, L.N., Bowen-Pope, D.F., Ross, R. and Reidy, M.A. 1986. Production of platelet-derived growth factor-like molecules by cultured arterial smooth muscle cells accompanies proliferation after arterial injury. Proc. Natl. Acad. Sci. USA 83: 7311–7315.

    Article  PubMed  CAS  Google Scholar 

  139. Clowes, A.W., Clowes, M.M. and Reidy, M.A. 1986. Kinetics of cellular proliferation after arterial injury. III. Endothelial and smooth muscle growth in chronically denuded vessels. Lab. Invest. 54: 295–303.

    PubMed  CAS  Google Scholar 

  140. Ross, R., Masuda, J., Raines, E.W., Gown, A.M., Katsuda, S., Sasahara, M., Malden, L.T., Masuko, H. and Sato, H. 1990. Localization of PDGF-B protein in macrophages in all phases of atherogenesis. Science 248: 1009–1012.

    Article  PubMed  CAS  Google Scholar 

  141. Nam, S.C., Florentin, R.A., Janakidevi, K., Lee, K.T., Reiner, J. and Thomas, W.A. 1974. Population dynamics of arterial smooth muscle cells. III. Inhibition by aortic tissue extracts of proliferative response to intimai injury in hypercholesterolemic swine. Exp. Mol. Pathol. 21: 259–267.

    Article  PubMed  CAS  Google Scholar 

  142. Eisenstein, R., Harper, E., Kuettner, K.E., Schumacher, B. and Matijevitch, B. 1979. Growth regulators in connective tissue. II. Evidence for the presence of several growth inhibitors in aortic extracts. Paroi Arterielle 163–169.

    Google Scholar 

  143. Chamley-Campbell, J.H. and Campbell, G.R. 1981. What controls smooth muscle phenotype? Atherosclerosis 40: 347–357.

    Article  PubMed  CAS  Google Scholar 

  144. Clowes, A.W. and Karnovsky, M.J. 1977. Suppression by heparin of smooth muscle cell proliferation in injured arteries. Nature 265: 625–626.

    Article  PubMed  CAS  Google Scholar 

  145. Majesky, M.W., Schwartz, S.M., Clowes, M.M. and Clowes, A.W. 1987. Heparin regulates smooth muscle S phase entry in the injured rat carotid artery. Circ. Res. 61: 296–300.

    Article  PubMed  CAS  Google Scholar 

  146. Campbell, J.H. and Campbell, G.R. 1986. Endothelial cell influences on vascular smooth muscle phenotype. Ann. Rev. Phvsiol. 48: 295–306.

    Article  CAS  Google Scholar 

  147. Castellot, Jr. J,J., Addonizio, M.L., Rosenberg, R. and Karnovsky, M.J. 1981. Cultured endothelial cells produce a heparin-like inhibitor of smooth muscle cell growth. J. Cell Biol. 90: 372–379.

    Article  PubMed  CAS  Google Scholar 

  148. Furcht, L.T. 1986. Editorial. Critical factors controlling angiogenesis: cell products, cell matrix, and growth factors. Lab. Invest. 55: 505–508.

    PubMed  CAS  Google Scholar 

  149. Reilly, C.F., Fritze, L.M.S. and Rosenberg, R.D. 1987. Antiproliferative effects of heparin on vascular smooth muscle cells are reversed by epidermal growth factor. J. Cell Physiology 131: 149–157.

    Article  CAS  Google Scholar 

  150. Fritz, L.M.S., Reilly, C.F. and Rosenberg, R.D. 1985. An antiproliferative heparan sulfate species produced by postconfluent smooth muscle cells. J. Cell Biol. 100: 1041–1049.

    Article  Google Scholar 

  151. Oosta, G.M., Favreau, L.V., Beeler, D.L. and Rosenberg, R.D. 1982. Purification and properties of human platelet heparitinase. J. Biol. Chem. 257: 11249–11255.

    PubMed  CAS  Google Scholar 

  152. Wasteson, A., Hook, M. and Westermark, B. 1976. Demonstration of a platelet enzyme, degrading heparan sulphate. FEBS Letters 64: 218–221.

    Article  PubMed  CAS  Google Scholar 

  153. Wasteson, A., Glimelius, B., Busch, C., Westermark, B., Heldin, C.H. and Norling, B. 1977. Effect of a platelet endoglycosidase on cell surface associated heparan sulphate of human cultured endothelial and glial cells. Thrombosis Res. 11: 309–321.

    Article  CAS  Google Scholar 

  154. Castellot, Jr. J.J., Favreau, L.V., Karnovsky, M.J. and Rosenberg, R.D. 1982. Inhibition of vascular smooth muscle cell growth by endothelial cell-derived heparin. Possible role of a platelet endoglycosidase. J. Biol. Chem. 257: 11256–11260.

    PubMed  CAS  Google Scholar 

  155. Handin, R.I. and Cohen, J.H. 1976. Purification and binding properties of human platelet factor four. J. Biol. Chem. 251: 4273–4282.

    PubMed  CAS  Google Scholar 

  156. Faggiotto, A., Ross, R. and Harker, L. 1984. Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis 4: 323–340.

    Article  PubMed  CAS  Google Scholar 

  157. Faggiotto, A. and Ross, R. 1984. Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque. Arteriosclerosis 4: 341–356.

    Article  PubMed  CAS  Google Scholar 

  158. Gerrity, R.G. 1981. The role of the monocyte in atherogenesis. I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am. J. Pathol. 103: 181–190.

    PubMed  CAS  Google Scholar 

  159. Rosenfeld, M.E., Tsukada, T., Chait, A., Bierman, E.L., Gown, A.M. and Ross, R. 1987. Fatty streak expansion and maturation in Watanabe heritable hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 7: 24–34.

    Article  PubMed  CAS  Google Scholar 

  160. Barrett, T.B. and Benditt, E.P. 1988. Platelet-derived growth factor gene expression in human atherosclerotic plaques and normal artery wall. Proc. Natl. Acad. Sci. USA 85: 2810–2814.

    Article  PubMed  CAS  Google Scholar 

  161. Cornhill, J.F., Barrett, W.A., Herderick, E.E., Mahley, R.W. and Fry, D.L. 1985. Topographic study of sudanophilic lesions in cholesterol-fed minipigs by image analysis. Arteriosclerosis 5: 415–426.

    Article  PubMed  CAS  Google Scholar 

  162. Grottum, P., Svindland, A. and Walloe, L. 1983. Localization of early atherosclerotic lesions in the right carotid bifurcation in humans. Acta Path. Microbiol. Immunol. Scand. Sect A 91: 65–70.

    CAS  Google Scholar 

  163. Stary, H.C. 1980. The intimai macrophage in atherosclerosis. Artery 8(3): 205–207.

    PubMed  CAS  Google Scholar 

  164. Fowler, S., Shio, H. and Faley, N.J. 1979. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. IV. Investigation of macrophage-like properties of aortic cell populations. Lab. Invest. 41(4): 372–378.

    PubMed  CAS  Google Scholar 

  165. Rosenfeld, M.E., Tsukada, T., Gown, A.M. and Ross, R. 1987. Fatty streak initiation in Watanabe heritable hyperlipemic and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 7: 9–23.

    Article  PubMed  CAS  Google Scholar 

  166. Leibovich, S.J. and Ross, R. 1976. A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro. Am. J. Pathol. 84: 501–513.

    PubMed  CAS  Google Scholar 

  167. Shimokado, K., Raines, E.W., Madtes, D.K., Barrett, T.B., Benditt, E.P., and Ross, R. 1985. A significant part of macrophage-derived growth factor consists of at least two forms of PDGF. Cell 43: 277–286.

    Article  PubMed  CAS  Google Scholar 

  168. Martinet, Y., Bitterman, P.B., Mornex, J., Grotendorst, G.R., Martin, G.R. and Crystal, R.G. 1986. Activated human monocytes express the c-sis proto-oncogene and release a ediator showing PDGF-like activity. Nature 319: 158–160.

    Article  PubMed  CAS  Google Scholar 

  169. Goode, T.B., Davies, P.F., Reidy, M.A. and Bowyer, D.E. 1977. Aortic endothelial cell morphology observed in situ by scanning electron microscopy during atherogenesis in rabbits. Atherosclerosis 27: 235–251.

    Article  PubMed  CAS  Google Scholar 

  170. Scott, R.F., Thomas, W.A., Lee, W.M., Reiner, J.M. and Florentin, R.A. 1979. Distribution of intimal smooth muscle cell mass and their relationship to early atherosclerosis in the abdominal aortas of young swine. Atherosclerosis 34: 291–301.

    Article  PubMed  CAS  Google Scholar 

  171. Vanhoutte, P.M. and Houston, D.S. 1985. Platelets, endothelium and vasospasm. Circulation 72: 728–734.

    Article  PubMed  CAS  Google Scholar 

  172. Heistad, D.D., Armstrong, M.L., Marcus, M.L., Piegors, D.J. and Mark, A. 1984. Augmented responses to vasoconstrictor stimuli in hypercholesterolemic monkeys. Circ. Res. 54: 711–718.

    Article  PubMed  CAS  Google Scholar 

  173. Lopez, J.A.G., Armstrong, M.L., Harrison, D.G., Piegors, D.J. and Heistad, D.D. 1989. Vascular responses to leukocytic products in atherosclerotic primates. Circ. Res. 65: 1078–1086.

    Article  PubMed  CAS  Google Scholar 

  174. Levy, G.A., Schwartz, B.S., Curtiss, L.K. and Edgington, T.S. 1981. Plasma lipoprotein induction and suppression of the generation of cellular procoagulant activity in vitro. J. Clin. Invest. 67: 1614–1622.

    Article  PubMed  CAS  Google Scholar 

  175. Schwartz, B.S., Levy, G.A., Curtiss, L.K., Fair, D.S. and Edgington, T.S. 1981. Plasma lipoprotein induction and suppression of the generation of cellular procoagulant activity in vitro. J. Clin. Invest. 67: 1650–1658.

    Article  PubMed  CAS  Google Scholar 

  176. Falk, E. 1983. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br. Heart J. 50: 127.

    Article  PubMed  CAS  Google Scholar 

  177. Sherman, C.T., Litvack, F., Grundfest, W., Lee, M., Hickey, A., Chaux, A., Kass, R., Blanche, C., Matloff, J., Mogenstern, L., et al. 1986. Coronary angioscopy in patients with unstable angina pectoris. N. Engl. J. Med. 315: 913.

    Article  PubMed  CAS  Google Scholar 

  178. Imparato, A.M., Riles, T.S., Mintzer, R. and Baumann, F.G. 1983. The importance of hemorrhage in the relationship between gross morphologic characteristics and cerebral symptoms in 376 carotid artery plaques. Ann. Surg. 197: 195.

    Article  PubMed  CAS  Google Scholar 

  179. DeWood, M.A., Spores, J., Notske, R., Mouser, L.T., Burroughs, R., Golden, M.S. and Lang, H.T. 1980. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N. Engl. J. Med. 303: 897.

    Article  PubMed  CAS  Google Scholar 

  180. Davies, M.J., Woolf, N. and Robertson, W.B. 1976. Pathology of acute myocardial infarction with particular reference to occlusive coronary thrombi. Br. Heart J. 38: 659.

    Article  PubMed  CAS  Google Scholar 

  181. Buja, L.M. and Willerson, J.T. 1981. Clinicopathic correlates of acute ischemic heart disease syndromes. Am. J. Cardiol. 47: 343.

    Article  PubMed  CAS  Google Scholar 

  182. Horie, T., Sekiguchi, M. and Hirosawa, K. 1978. Coronary thrombosis in pathogenesis of acute myocardial infarction. Histopathological study of coronary arteries in 108 necropsied cases using serial section. Br. Heart J. 40: 153.

    Article  PubMed  CAS  Google Scholar 

  183. Forrester, J.S., Litvack, F., Grundfest, W. and Hickey, A. 1987. A perspective of coronary disease seen through the arteries of living man. Circulation 75: 505.

    Article  PubMed  CAS  Google Scholar 

  184. Constantinides, P. 1966. Plaque fissures in human coronary thrombosis. J. Athero Res. 6: 1.

    Article  Google Scholar 

  185. Friedman, M. and van den Bovenkamp, G.J. 1966. The pathogenesis of a coronary thrombus. Am. J. Pathol. 48: 19.

    PubMed  CAS  Google Scholar 

  186. Friedman, M. 1971. The coronary thrombus: its origin and fate. Hum. Pathol. 2: 81.

    Article  PubMed  CAS  Google Scholar 

  187. Chapman, I. 1965. Morphogenesis of occluding coronary artery thrombosis. Arch. Pathol. 80: 256–261.

    PubMed  CAS  Google Scholar 

  188. Drury, R.A.B. 1954. The role of intimai haemorrhage in coronary occlusion. J. Path. Bact. 67: 207–215.

    Article  PubMed  CAS  Google Scholar 

  189. Constantinides, P. 1967. Pathogenesis of cerebral artery thrombosis in man. Arch. Pathol. 83: 422.

    PubMed  CAS  Google Scholar 

  190. Kinlough-Rathbone, R.L., Packham, M.A. and Mustard, J.F. 1983. Vessel injury, platelet adherence, and platelet survival. Arteriosclerosis 3: 529.

    Article  PubMed  CAS  Google Scholar 

  191. Groves, H.M., Kinlough-Rathbone, R.L., Richardson, M., Moore, S. and Mustard, J.F. 1979. Platelet interaction with damaged rabbit aorta. Lab. Invest. 40: 194.

    PubMed  CAS  Google Scholar 

  192. Parsons, T.J., Haycraft, D.L., Hoak, J.C. and Sage, H. 1986. Interaction of platelets and purified collagens in a laminar flow model. Thromb. Res. 43: 435.

    Article  PubMed  CAS  Google Scholar 

  193. Wilner, G.D., Nossel, H.L. and LeRoy, E.C. 1968. Aggregation of platelets by collagen. J. Clin. Invest. 47: 2616.

    Article  PubMed  CAS  Google Scholar 

  194. Badimon, L., Badimon, J.J., Turitto, V.T., Vallabhajosula, S. and Fuster, V. 1988. Platelet thrombus formation on collagen type I: A model of deep vessel injury. Circulation 78: 1431–1442.

    Article  PubMed  CAS  Google Scholar 

  195. Wilner, G.D., Nossel, H.L. and LeRoy, E.C. 1968. Activation of Hageman factor by collagen. J. Clin. Invest. 47: 2608.

    Article  PubMed  CAS  Google Scholar 

  196. Niesiarowski, S., Stuart, R.K. and Thomas, D.P. 1966. Activation of intravascular coagulation by collagen. Proc. Soc. Exp. Biol. Med. 123: 196.

    Google Scholar 

  197. Nemerson, Y. 1966. The reaction between bovine brain tissue factor and factors VII and X. Biochemistry 5: 601.

    Article  PubMed  CAS  Google Scholar 

  198. Osterud, B. and Rapaport, S.I. 1977. Activation of factor IX by the reaction product of tissue factor and factor VII: additional pathway for initiating blood coagulation. Proc. Natl. Acad. Sci. USA 74: 5260.

    Article  PubMed  CAS  Google Scholar 

  199. Nemerson, Y. and Bach, R. 1982. Tissue factor revisited. Prog. Hemostasis Thromb. 6: 237.

    CAS  Google Scholar 

  200. Nemerson, Y. 1988. Tissue factor and hemostasis. Blood 71: 1.

    PubMed  CAS  Google Scholar 

  201. Hartzell, S., Ryder, K., Lanahan, A., Lau, L.F. and Nathans, D. 1989. A growth factor-responsive gene of murine BALB/c 3T3 cells encodes a protein homologous to human tissue factor. Mol. Cell Biol. 9: 2567.

    PubMed  CAS  Google Scholar 

  202. Bloem, L.J., Chen, L., Konigsberg, W.H. and Bach, R. 1989. Serum stimulation of quiescent human fibroblasts induces the synthesis of tissue factor mRNA followed by the appearance of tissue factor antigen and procoagulant activity. J. Cell Physiol. 139: 418–423.

    Article  PubMed  CAS  Google Scholar 

  203. Wilcox, J.N., Augustine, A.J., Smith, K.M., Schwartz, S.M. and Gordon, D. 1989. Localization of cells expressing tPA, PAI1, and urokinase by in situ hybridization in human atherosclerotic plaques and in the normal rhesus monkey. Thromb. Haemostasis 62: 131,419A.

    Google Scholar 

  204. Longenecker, J.P., Kilty, L.A. and Johnson, L.K. 1984. Glucocorticoid inhibition of vascular smooth muscle cell proliferation: influence of homologous extracellular matrix and serum mitogens. J. Cell Biol. 98: 534–540.

    Article  PubMed  CAS  Google Scholar 

  205. Ouchi, Y., Hirosumi, J., Watanabe, M., Hattori, A., Nakamura, T. and Orimo, H. 1988. Inhibitory effect of transforming growth factor-beta on epidermal growth factor-induced proliferation of cultured rat aortic smooth muscle cells. Biochem. Biophvs. Res. Commun. 157:301–307.

    Article  CAS  Google Scholar 

  206. Owens, G.K., Geisterfer, A.A., Yang, Y.W. and Komoriya, A. 1988. Transforming growth factor-beta-induced growth inhibition and cellular hypertrophy in cultured vascular smooth muscle cells. J. Cell Biol. 107: 771–780.

    Article  PubMed  CAS  Google Scholar 

  207. Clemons, D.R. and Van Wyk, J.J. 1985. Evidence for a functional role of endogenously produced somatomedinlike peptides in the regulation of DNA synthesis in cultured human fibroblasts and porcine smooth muscle cells. J. Clin. Invest. 75: 1914–1918.

    Article  Google Scholar 

  208. Geisterfer, A.A., Peach, M.J. and Owens, G.K. 1988. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ. Res. 62(4): 749–756.

    Article  PubMed  CAS  Google Scholar 

  209. Nilsson, J., Ksiazek, T., Thyberg, J. and Wasteson, A. 1983. Cell surface components and growth regulation in cultivated arterial smooth muscle cells. J. Cell Sci. 64: 107–121.

    PubMed  CAS  Google Scholar 

  210. Thyberg, J. 1986. Effects of nicotine on phenotypic modulation and initiation of DNA synthesis in cultured arterial smooth muscle cells. Virchows Arch. 52: 25–32.

    Article  CAS  Google Scholar 

  211. Palmberg, L., Claesson, H.E. and Thyberg, J. 1987. Leukotrienes stimulate initiation of DNA synthesis in cultured arterial smooth muscle cells. J. Cell Sci. 88: 151–159.

    PubMed  CAS  Google Scholar 

  212. Ishida, T. and Tanaka, K. 1982. Effects of fibrin and fibrinogen-degradation products on the growth of rabbit aortic smooth muscle cells in culture. Atherosclerosis 44: 161–174.

    Article  PubMed  CAS  Google Scholar 

  213. Libby, P., Wyler, D.J., Janicka, M.W. and Dinarello, C.A. 1985. Differential effects of human interleukin-I on growth of human fibroblasts and vascular smooth muscle cells. Atherosclerosis 5: 186–191.

    CAS  Google Scholar 

  214. Raines, E.W., Dower, S.K. and Ross, R. 1989. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science 243: 393–396.

    Article  PubMed  CAS  Google Scholar 

  215. Nakaki, T., Nakayama, M., Yamamoto, S. and Kato, R. 1989. Endothelinmediated stimulation of DNA synthesis in vascular smooth muscle cells. Biochem. Biophvs. Res. Commun. 158: 880–883.

    Article  CAS  Google Scholar 

  216. Nemecek, G.M., Coughlin, S.R., Handley, D.A. and Moskowitz, M.A. 1986. Stimulation of aortic smooth muscle cell mitogenesis by serotonin. Proc. Natl. Acad. Sci. 83: 674–678.

    Article  PubMed  CAS  Google Scholar 

  217. Hultgardh-Nilsson, A., Nilsson, J., Jonson, B. and Dalsgaard, C.J. 1988. Coupling between inositol phosphate formation and DNA synthesis in smooth muscle cells stimulated with neurokinin A. J. Cell Physiol. 137: 141–145.

    Article  PubMed  CAS  Google Scholar 

  218. Nilsson, J., Sejersen, T., Nilsson, A.H. and Dalsgaard, C.J. 1986. DNA synthesis induced by the neuropeptide substance K correlates to the level of myc-gene transcripts. Biochem. Biophvs. Res. Commun. 137: 167–174.

    Article  CAS  Google Scholar 

  219. Nilsson, J., von Euler, A.M. and Dalsgaard, C.J. 1985. Stimulation of connective tissue cell growth by substance P and substance K. Nature 315: 61–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schwartz, S.M., Gordon, D., Wilcox, J.N. (1991). Natural History of Atherosclerosis. In: Gotlieb, A.I., Langille, B.L., Fedoroff, S. (eds) Atherosclerosis. Altschul Symposia Series, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3754-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3754-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6672-0

  • Online ISBN: 978-1-4615-3754-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics