Skip to main content

Transition to Chaos in Nonlinear Oscillators

  • Chapter
The Global Geometry of Turbulence

Part of the book series: NATO ASI Series ((NSSB,volume 268))

  • 223 Accesses

Abstract

During the first half of last decade, the development of nonlinear dynamical systems theory and experiments /1,2/ produced great expectations in the scientific community. For some time it appeared that understanding the transition to turbulence in terms of transitions to chaos as they appeared in systems with small number of degrees of freedom. Today these expectations have weakened significantly; however, still some hydrodynamic flows have been shown to display chaotic transitions prior to entering into turbulent states /3/. Therefore studying chaotic temporal dynamics in initially oscillatory systems may still have some relevance for the understanding of the complex behavior of turbulent hydrodynamic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Bergé, Y. Pomeau and Ch. Vidal, L’Ordre dans le Chaos, Hermann, Paris, (1984).

    MATH  Google Scholar 

  2. H. L. Swinney, N. B. Abraham and J. P. Gollub, Physica 11D(1984), 252.

    ADS  Google Scholar 

  3. K. R. Sreenivasan and R. Ramshankar, Physica 23D(1986), 246.

    ADS  Google Scholar 

  4. F. T. Arecchi, F. Lisi, Phys. Rev. Lett., 49(1982), 94;

    Article  ADS  Google Scholar 

  5. F. T. Arecchi, A. Califano, Phys. Lett. 101A(1984), 443.

    ADS  Google Scholar 

  6. R. F. Miracky, M. H. Devoret, J. Clarke, Phys. Rev., A 31(1985), 2509.

    MathSciNet  ADS  Google Scholar 

  7. E. G. Gwinn, R. M. Westervelt, Phys. Rev. Lett., 54(1985), 1613.

    Article  ADS  Google Scholar 

  8. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, Berlin, (1983).

    MATH  Google Scholar 

  9. H. Helmholtz, Die Lehre von den Tonempfindungen als Physiologische Grundlage fur die Theorie der Musik, Friedrich Viewveg, Braunschweig, (1870).

    Google Scholar 

  10. T. Poston and I. Stewart, Catastrophe Theory and its Applications. Pitman, London (1978).

    MATH  Google Scholar 

  11. J. M. Thompson, S. R. Bishop and L. M. Leung, Phys. Lett. 121A(1987), 116.

    MathSciNet  ADS  Google Scholar 

  12. R. M. May, Nature 261(1976), 459;

    Article  ADS  Google Scholar 

  13. M. J. Feigenbaum, J. Stat. Phys. 21 (1979), 669.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. P. Manneville and Y. Pomeau, Physica 1D(1980), 219;

    MathSciNet  ADS  Google Scholar 

  15. Y. Pomeau, P. Manneville, Comm. Math. Phys., 74(1980) 189;

    Article  MathSciNet  ADS  Google Scholar 

  16. P. Manneville in Symmetries and Broken Symmetries, N. Boccara Ed., Paris (1981).

    Google Scholar 

  17. A. H. Nayfeh and D. T. Mook, Non-linear Oscillations. John Wiley, New York (1979).

    Google Scholar 

  18. M. A. Rubio, M. de la Torre, J. C. Antoranz and M. G. Velarde in Computational Systems - Natural and Ar’ ificial, H. Haken Ed., Springer-Verlag, New York (1987).

    Google Scholar 

  19. M. A. Rubio, M. de la Torre and J. C. Antoranz, Physica D, 36(1989), 92;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. J. C. Antoranz, M. A. Rubio and M. de la Torre, Prog. Theor. Physics, 81(1989), 544.

    Article  ADS  Google Scholar 

  21. M. Dubois, M. A. Rubio and P. Bergé, Phys. Rev. Lett., 51(1983), 1446.

    Article  MathSciNet  ADS  Google Scholar 

  22. H. Bunz, H. Ohno and H. Haken, Z. Phys., B 56(1984), 345.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Antoranz, J.C., Rubio, M.A. (1991). Transition to Chaos in Nonlinear Oscillators. In: Jiménez, J. (eds) The Global Geometry of Turbulence. NATO ASI Series, vol 268. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3750-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3750-2_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6670-6

  • Online ISBN: 978-1-4615-3750-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics