Skip to main content

Do Periplasmic Oligosaccharides Provide a Role in the Osmotic Adaptation of Gram-Negative Bacteria?

  • Chapter
General and Applied Aspects of Halophilic Microorganisms

Part of the book series: NATO ASI Series ((NSSA,volume 201))

  • 160 Accesses

Abstract

A wide diversity of Gram-negative bacteria has been shown to strictly osmoregulate the biosynthesis of anionic periplasmic oligosaccharides. Specifically, the concentrations of these oligosaccharides and their counterions increase when cells are grown in media of low osmolarity. Based on the amounts of these oligosaccharides, their presence should substantially influence periplasmic osmotic strength and volume. In addition, the development of a Donnan potential across the outer membrane of Gram-negative bacteria should also derive largely from the concentrations of these anionic periplasmic oligosaccharides. This paper provides a review of several studies which indicate that the cell-envelope structure of Gram-negative bacteria is influenced greatly by the presence of periplasmic oligosaccharides. The possible role for these compounds in the osmotic adaptation of Gram-negative bacteria is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. D. Brown, Bacteriol. Rev.40: 803 (1976)

    PubMed  CAS  Google Scholar 

  2. E. P. Kennedy, Proc. Natl. Acad. Sci. USA79: 1092 (1982)

    Article  PubMed  CAS  Google Scholar 

  3. K. J. Miller, E. P. Kennedy and V. N. Reinhold, Science231: 48 (1986)

    Article  PubMed  CAS  Google Scholar 

  4. L. M. G. Van Golde, H. Schulman and E. P. Kennedy, Proc. Natl. Acad. Sci. USA70: 1368 (1973)

    Article  PubMed  Google Scholar 

  5. J. E. Schneider, V. Reinhold, M. K. Rumley and E. P. Kennedy, J. Biol. Chem.254: 10135 (1979)

    PubMed  CAS  Google Scholar 

  6. B. J. Jackson and E. P. Kennedy, J. Biol. Chem.258: 2394 (1983)

    PubMed  CAS  Google Scholar 

  7. K. J. Miller and E. P. Kennedy, J. Bacteriol.169: 682 (1987)

    PubMed  CAS  Google Scholar 

  8. J. B. Stock, B. Rauch and S. Roseman, J. Biol. Chem.252: 7850 (1977)

    PubMed  CAS  Google Scholar 

  9. K. Sen, J. Hellman and H. Nikaido, J. Biol. Chem.263: 1182 (1988)

    PubMed  CAS  Google Scholar 

  10. A. Dell, W. S. York, M. McNeil, A. G. Darvill and P. Albersheim, Carbohyd. Res.117: 185 (1983)

    Article  CAS  Google Scholar 

  11. M. Hisamatsu, A. Amemura, T Matsuo, H. Matsuda and T. Harada, J. Gen. Microbiol.128: 1873 (1982)

    CAS  Google Scholar 

  12. M. Hisamatsu, A. Amemura, K. Koizumi, T. Utamura and Y. Okada, Carbohyd. Res.121: 31 (1983)

    Article  CAS  Google Scholar 

  13. K. Koizumi, Y. Okada, S. Horiyama and T. Utamura, J. Chromatography265: 89 (1983)

    Article  CAS  Google Scholar 

  14. W. S. York, M. McNeil, A. G. Darvill and P. Albersheim, J. Bacteriol.142: 243 (1980)

    PubMed  CAS  Google Scholar 

  15. L. P. T. M. Zevenhuizen and H. J. Scholten-Koerselman, Ant. van Leeuwenhock45: 165 (1979)

    Article  CAS  Google Scholar 

  16. K. J. Miller, V. N. Reinhold, A. C. Weissborn and E. P. Kennedy, Biochim. Biophys. Acta901: 112 (1987)

    Article  PubMed  CAS  Google Scholar 

  17. K. J. Miller, R. S. Gore and A. J. Benesi, J. Bacteriol.170: 4569 (1988)

    PubMed  CAS  Google Scholar 

  18. J.-P. Bohin and E. P. Kennedy, J. Bacteriol.157: 956 (1984)

    PubMed  CAS  Google Scholar 

  19. J.-V. Holtje, W. Fiedler, H. Rotering, B. Walderich and J. van Duin, J. Biol. Cheni.263: 3539 (1988)

    CAS  Google Scholar 

  20. W. Fiedler and H. Rotering, J. Biol. Chem. 263: 14684 (1988)

    PubMed  CAS  Google Scholar 

  21. V. Puvanesarajah, F. M. Schell, G. Stacey, C. J. Douglas and E. W. Nester, J. Bacteriol.164: 102 (1985)

    PubMed  CAS  Google Scholar 

  22. T. Dylan, L. Ielpi, S. Stanfield, L. Kashyap, C. Douglas, M. Yanofsky, E. Nester, D. R. Helinski and G. Ditta, Proc. Natl. Acad. Sci. USA83: 4403 (1986)

    Article  PubMed  CAS  Google Scholar 

  23. R. A. Geremia, S. Cavaignac, A. Zorreguieta, N. Toro, J. Olivares and R. A. Ugalde, J. Bacteriol.169: 880 (1987)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, K.J. (1991). Do Periplasmic Oligosaccharides Provide a Role in the Osmotic Adaptation of Gram-Negative Bacteria?. In: Rodriguez-Valera, F. (eds) General and Applied Aspects of Halophilic Microorganisms. NATO ASI Series, vol 201. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3730-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3730-4_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6660-7

  • Online ISBN: 978-1-4615-3730-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics