Skip to main content

A High Resolution Barium Fluoride Calorimeter

  • Chapter
Supercollider 2
  • 137 Accesses

Abstract

A high speed and highly radiation-resistant barium fluoride crystal array is under development by the Caltech group in collaboration with the Brookhaven National Lab, the Shanghai Institute of Ceramics in China, the KEK in Japan and the AccSys Technology Inc. in California. The barium fluoride array will serve as a prototype for a high precision electromagnetic calorimeter at the SSC, which has a unique capability in detecting the Higgs particles in the mass region between 80 to 180 GeV. The research and development program involves 3 aspects: (1) production of barium fluoride crystals with very large size (800 cm3) and high radiation resistance (10 MRads); (2) development of a fast readout system with an optical and electrical suppression on the slow component; and (3) development of an effective precision calibration system based on radiative capture of a pulsed proton beam from an Radio Frequency Quadruploe accelerator on a calcium fluoride target.

Representing the team of H. Newman (Caltech), H. Ma, C. Woody (BNL), Z.Y. Wei, Z.W. Yin (SIC, China), T. Matsuda, F. Takasaki (KEK, Japan) and R. Hamm (AccSys , California).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.D.G. Gilchriese, in “Proceedings of the 1984 Summer Study on the Design and Utilization of the Superconducting Super Collider”, edited by R. Donaldson and J.G. Morfin, Snowmass, Co. (1984) 607;

    Google Scholar 

  2. H.H. Williams, in “Proceedings of the 1986 Summer Study on the Physics of the Superconducting Super Collider”, edited by R. Donaldson and J. Marx, Snowmass, Co. (1986) 327;

    Google Scholar 

  3. SSC Central Design Group, “Report of the Task Force on Detector Research Development for the Superconducting Super Collider”, SSC-SR-1021 (1986).

    Google Scholar 

  4. D. E. Groom, in “Proceedings of the 1988 Summer Study on the High Energy Physics in 1990’s”, Snowmass, Co. (1988).

    Google Scholar 

  5. L3 Collaboration, “L3 Technical Proposal”, May 1983;

    Google Scholar 

  6. J. Bakken et al., Nucl. Instr. and Meth. A254 (1987) 535 and A228 (1985) 294.

    Google Scholar 

  7. J. Gunion et al., “The Higgs Hunter’s Guide”, UCD Preprint, 89–4 (1989).

    Google Scholar 

  8. CERN Green Book, “ECFA Workshop on LEP 200”, Aachen, September, 1986.

    Google Scholar 

  9. H. Benson and T. Sjostrand, “A Manual to the Lund Monte Carlo for Hadronic Processes”, PYTHIA version 5.3, November, 1989.

    Google Scholar 

  10. F. Paige and S.D. Protopopescu, “ISAJET 6.27 A Monte Carlo Event Generator for P-P and \(\overline p\)-P Reactions“, April, 1990.

    Google Scholar 

  11. The cross-section of H0 →γγ is scaled up by a factor of two according to J. Stirling, a talk given in a recent “ECFA-LHC meeting” at CERN. An argument was given that one should use a running b quark mass (in the spirit of perturbative QCD) in evaluating the H0 → bb̄ coupling. Since the b quark mass is smaller than the scale of the Higgs mass, the width for this channel is reduced by almost a factor of two. Also other quark channels are reduced by the same argument. Since the effective width into γγ is unchanged, the actual branching ratio thus is increased. According to T. Sjostrand, this increase will be implemented into the PYTHIA program in near future. See also [4].

    Google Scholar 

  12. D. Dicus and S. Willenbrock, Phys. Rev. D37 (1988) 1801.

    Google Scholar 

  13. M. Lavel et al., Nucl. Instr. and Meth. A206 (1983) 169;

    Article  Google Scholar 

  14. P. Schotanus et al., Nucl. Instr. and Meth. A259 (1987) 586;

    Article  Google Scholar 

  15. P. Schotanus et al., IEEE-NS 34 (1987) 76.

    Google Scholar 

  16. S. Majewski and D. Anderson et al., Nucl. Instr. and Meth. A241 (1985) 76;

    CAS  Google Scholar 

  17. A. J. Caffrey et al., IEEE Trans. Nucl. Sci. NS-33 (1986) 230;

    Google Scholar 

  18. S. Majewski et al., Nucl. Instr. and Meth. A260 (1987) 373.

    CAS  Google Scholar 

  19. D.F. Anderson et al., Nucl. Instr. and Meth. A228 (1984) 33.

    Article  CAS  Google Scholar 

  20. P. Schotanus et al., IEEE-NS 34 (1987) 272;

    Google Scholar 

  21. P. Schotanus et al., Nucl. Instr. and Meth. A281 (1989) 162.

    Google Scholar 

  22. C.L. Woody et al., IEEE-NS 36 (1989) 536.

    Article  CAS  Google Scholar 

  23. P. Schotanus et al., Nucl. Instr. and Meth. A238 (1985) 564;

    Google Scholar 

  24. Kobayashi et al., Nucl. Instr. and Meth. A270 (1988) 106.

    CAS  Google Scholar 

  25. S. Suzuki, private communication.

    Google Scholar 

  26. P. Schotanus et al., Nucl. Instr. and Meth. A272 (1987) 917;

    Google Scholar 

  27. P. Schotanus et al., Technical Univ. at Delft Preprint 88–1.

    Google Scholar 

  28. E. Lorenz et al., Nucl. Instr. and Meth. A249 (1986) 235;

    CAS  Google Scholar 

  29. J. Giehl et al., Nucl. Instr. and Meth. A263 (1988) 392.

    CAS  Google Scholar 

  30. R.Y. Zhu et al., “Supper Collider I”, Plenum Press, edited by McAshan, (1989) 587;

    Google Scholar 

  31. H. Ma et al., Nucl. Instr. and Meth. A274 (1989) 113;

    CAS  Google Scholar 

  32. H. Ma et al., Nucl. Instr. and Meth. A281 (1989) 469.

    CAS  Google Scholar 

  33. H. Bergstroem et al., Penn State Preprint PSU/TH/63, March, 1990.

    Google Scholar 

  34. R.Y. Zhu, “A portable BGO readout system for RFQ test”, talk given in L3 collaboration meeting at Geneva, May 1987.

    Google Scholar 

  35. F. Ajzenberg-Selove, Nucl. Phys. A475 (1987) 1;

    Google Scholar 

  36. H. B. Willard et al., Phys. Rev. 85 (1952) 849.

    Article  CAS  Google Scholar 

  37. R. Hamm, “SSC Electromagnetic Calorimeter Calibration Source”, Phase II proposal to the DoE SBIR program, December, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhu, Ry. (1990). A High Resolution Barium Fluoride Calorimeter. In: McAshan, M. (eds) Supercollider 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3728-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3728-1_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6659-1

  • Online ISBN: 978-1-4615-3728-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics