Skip to main content

Decay of Exciton Gratings in Anthracene: Anisotropy of Lowest Exciton Bands and Coexistence of Longpath and Shortpath Waveguide Modes

  • Chapter
  • 317 Accesses

Abstract

An anthracene crystal is one of convenient model systems that has been used already for many decades for systematic investigations of electronic excitation energy transfer by Frenkel excitons (small-radius excitons). Laser spectroscopy methods have significantly enriched this field of investigations. In particular, within the last few years the methods of transient gratings (TG) has aroused special interest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. J. Eichler, P. Gunter, D. W. Pohl, in “Laser Induced Dynamic Gratings,” ed. T. Tamir (Springer, Berlin, 1986); Special Issue on Dynamic Gratings and Four-Wave Mixing, IEEE J. Quantum Electron, QE-22 (1986).

    Google Scholar 

  2. J. R. Salcedo, A. E. Siegman, D. D. Dlott, M. D. Fayer, Phys. Rev. Lett. 41, 131 (1978).

    Article  Google Scholar 

  3. K. A. Nelson, D. D. Dlott, M. D. Fayer, Chem. Phys. Lett. 64, 88 (1979).

    Article  Google Scholar 

  4. K. A. Nelson, M. D. Fayer, J. Chem. Phys. 72, 5602 (1980).

    Google Scholar 

  5. M. D. Fayer, in “Excitation Dynamics and Spectroscopy of Condensed Molecular System,” eds. V. M. Agranovich, R. M. Hochstrasser (North-Holland, Amsterdam, 1983).

    Google Scholar 

  6. T. S. Rose, R. Righini, M. D. Fayer, Chem. Phys. Lett. 106, 13 (1984).

    Article  Google Scholar 

  7. V. M. Kenkre, in “Exciton Dynamics in Molecular Crystals and Aggregates,” ed. G. Holer, (Springer, Berlin, 1982).

    Google Scholar 

  8. V. M. Kenkre, Phys. Rev. B18, 4064 (1978).

    MathSciNet  Google Scholar 

  9. Y. M. Wong, V. M. Kenkre, Phys. Rev. B22, 3072 (1980).

    Google Scholar 

  10. V. M. Kenkre, V. Ern, A. Fort, Phys. Rev. B28, 598 (1983).

    Google Scholar 

  11. A. Fort, V. Ern, V. M. Kenkre, Chem. Phys. 80, 205 (1983).

    Article  Google Scholar 

  12. V. M. Kenkre, D. Schmid, Phys. Rev. B31, 2430 (1985).

    Google Scholar 

  13. V. M. Kenkre, G. P. Tsironis, J. Lumin. 34, 107 (1985).

    Article  Google Scholar 

  14. D. K. Garrity, J. L. Skinner, J. Chem. Phys. 82, 260 (1985).

    Article  Google Scholar 

  15. T. S. Rose, J. V. Newell, J. S. Meth, M. D. Fayer, Chem. Phys. Lett. 145, 475 (1988).

    Article  Google Scholar 

  16. J. S. Meth, C. D. Marshall, M. D. Fayer, J. Lumin., submitted.

    Google Scholar 

  17. J. S. Meth, C. D. Marshall, M. D. Fayer, Solid State Commun., accepted (1990).

    Google Scholar 

  18. V. M. Agranovich, “Theory of Excitons” (Nauka, Moscow, 1968) (in Russian).

    Google Scholar 

  19. V. M. Agranovich, M. D. Galanin, “Electronic Excitation Energy Transfer in Condensed Matter” (North-Holland, Amsterdam, 1982).

    Google Scholar 

  20. J. Aaviksoo, A. Freiberg, J. Lipmaa, T. Reinot, J. Lumin. 37, 313 (1987).

    Article  Google Scholar 

  21. V. M. Agranovich, A. M. Ratner, M. Salieva, Solid State Commun. 63, 329 (1986).

    Article  Google Scholar 

  22. V. M. Agranovich, T. A. Leskova, Solid State Commun. 68, 1029 (1988).

    Article  Google Scholar 

  23. V. M. Agranovich, T. A. Leskova, Pis’ma Zh. Eksp. Teor. Fiz. 29, 151 (1979).

    Google Scholar 

  24. V. V. Travnikov, Pis’ma Zh. Eksp. Teor. Fiz. 29, 151 (1979).

    Google Scholar 

  25. J. Zyss, D. S. Chemla, in “Nonlinear Optical Properties of Organic Molecules and Crystals” V.1, p. 23 (1987).

    Book  Google Scholar 

  26. “Surface Polaritons,” eds. V. M. Agranovich, D. L. Mills (North-Holland, Amsterdam, 1982).

    Google Scholar 

  27. V. M. Agranovich, Yu. V. Konobeev, Sov. Phys.- Solid State 3, 260 (1961).

    Google Scholar 

  28. V. M. Agranovich, V. L. Ginzburg, “Crystaloptics with Spatial Dispersion and Excitons,” (Springer, Berlin, 1984).

    Google Scholar 

  29. S. V. Marisova, E. N. Myasnikov, A. N. Lipovchenko, Phys. stat. sol. (b) 115, 649 (1983).

    Article  Google Scholar 

  30. M. R. Philpott, J. Chem. Phys. 54, 111 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Agranovich, V.M., Leskova, T.A. (1991). Decay of Exciton Gratings in Anthracene: Anisotropy of Lowest Exciton Bands and Coexistence of Longpath and Shortpath Waveguide Modes. In: Garmire, E., Maradudin, A.A., Rebane, K.K. (eds) Laser Optics of Condensed Matter. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3726-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3726-7_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6658-4

  • Online ISBN: 978-1-4615-3726-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics