Skip to main content

Regional and Mesoscale Meteorological Modeling as Applied to Air Quality Studies

  • Chapter

Part of the book series: NATO · Challenges of Modern Society ((NATS,volume 15))

Abstract

Current air quality regulatory models are summarized in Turner et al. (1989). Unfortunately, these models have been applied more to conserve legal consistency over time than to accurately represent atmospheric flow, particularly in complex terrain and coastal zones [see discussions in Moran et al. (1986) and Lyons et al. (1983)]. These regulatory models are also not generally validated on a case-by-case basis but rather by using rank-order correlations (e.g., Fox, 1981).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anthes, R.A., 1983: Regional models of the atmosphere in middle latitudes. Mon. Wea. Rev., 111, 1306–1335.

    Article  Google Scholar 

  • Arritt, R.W., 1985: Numerical studies of thermally and mechanically forced circulations over complex terrain. Final Report, Contract No. NA81RAH00001, Amendment 17, Item 15, National Park Service, U.S. Department of the Interior, Denver, Colorado, 201 pp.

    Google Scholar 

  • Avissar, R., M.D. Moran, G. Wu, R.N. Meroney, and R.A. Pielke, 1990: Operating ranges of mesoscale numerical models and meteorological wind tunnels for the simulation of sea breezes and land breezes. Bound.-Layer Meteor. (In press).

    Google Scholar 

  • Brost, R.A., P.L. Haagenson, and Y.-H. Kuo, 1988: Eulerian simulation of tracer distribution during CAPTEX. J. Appl. Meteor., 27, 579–593.

    Article  Google Scholar 

  • Brusasca, G., G. Tinarelli, and D. Anfossi, 1989: Comparison between the results of a Monte Carlo atmospheric diffusion model and tracer experiments. Atmos. Environ., 23, 1263–1280.

    Article  CAS  Google Scholar 

  • Chang, J.S., R.A. Brost, I.S.A. Isaksen, S. Madronich, P. Middleton, W.R. Stockwell, and C.J. Walcek, 1987: A three-dimensional Eulerian acid deposition model: physical concepts and formulation. J. Geophys. Res., 92, 14681–14700.

    Article  CAS  Google Scholar 

  • Cogan, J.L., 1985: Monte Carlo simulation of buoyant dispersion. Atmos. Environ., 19, 867–878.

    Article  CAS  Google Scholar 

  • Corrsin, S., 1974: Limitations of gradient transport models in random walks and in turbulence. Adv. Geophys., 18A, 25–60.

    Google Scholar 

  • Cotton, W.R., C.J. Tremback, M.P. Meyers, M.E. Nicholls, and T.S. Pedersen, 1990: Prospects for short-term and mesoscale numerical forecasting — A basic researches perspective. Proc. Third AES/CMOS Workshop on Operational Meteorology, Atmospheric Environment Service, Toronto, Canada.

    Google Scholar 

  • Davis, P.A., 1983: Markov chain simulations of vertical dispersion from elevated sources into the neutral planetary boundary layer. Bound.-Layer Meteor., 26, 355–376.

    Article  Google Scholar 

  • de Baas, A.F., 1988: Some properties of the Langevin model for dispersion. Report No. Risø-M-2627, January, Risø National Laboratory, DK-4000, Roskilde, Denmark, 250 pp.

    Google Scholar 

  • de Baas, A.F., H. van Dop, and F.T.M. Nieuwstadt, 1986: An application of the Langevin equation for inhomogeneous conditions to dispersion in a convective boundary layer. Quart. J. Roy. Meteor. Soc., 112, 165–180.

    Article  Google Scholar 

  • Dronamraju, M., L.K. Peters, G.R. Carmichael, P. Kasibhatla, and S.-Y. Cho, 1988: An Eulerian transport /transformation/removal model for SO2 and sulfate — III: Comparison with the July 1974 SURE database. Atmos. Environ., 22, 2003–2011.

    Article  CAS  Google Scholar 

  • Durbin, P.A., 1980: A stochastic model of two-particle dispersion and concentration fluctuations in homogeneous turbulence. J. Fluid Mech., 100, 279–302.

    Article  Google Scholar 

  • Durbin, P.A., 1983: Stochastic differential equations and turbulent dispersion. NASA Ref. Pub. 1103, National Aeronautics and Space Administration, Washington, D.C., 73 pp.

    Google Scholar 

  • Einstein, A., 1905: Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. Annalen der Physik, 17, 549.

    Article  CAS  Google Scholar 

  • Etling, D., J. Preuss, and M. Wamser, 1986: Application of a random walk model to turbulent diffusion in complex terrain. Atmos. Environ., 20, 741–747.

    Article  Google Scholar 

  • Everhart, W.C., 1983: The National Park Service. Boulder, CO, Westview Press, 197 pp.

    Google Scholar 

  • Ferber, G.J., J.L. Heffter, R.R. Draxler, R.J. Lagomarsino, F.L. Thomas, R.N. Dietz, and C.M. Benkovitz, 1986: Cross-Appalachian Tracer Experiment (CAPTEX ′83) final report. NOAA Tech. Memo. ERL ARL-142, January, Air Resources Laboratory, National Oceanic and Atmospheric Administration, Silver Spring, Maryland, 60 pp.

    Google Scholar 

  • Fox, D.G., 1981: Judging air quality model performance. Bull. Amer. Meteor. Soc., 62, 599–609.

    Article  Google Scholar 

  • Frank, J.L., P.L. Moore, and G.E. Fisher, 1967: Summer shower distribution over the Florida Peninsula as deduced from digitized radar data. J. Appl. Meteor., 6, 309–316.

    Article  Google Scholar 

  • Gaffen, D.J., C. Benocci, and D. Olivari, 1987: Numerical modeling of buoyancy dominated dispersal using a Lagrangian approach. Atmos. Environ., 21, 1285–1293.

    CAS  Google Scholar 

  • Garrett, A.J. and F.G. Smith, III, 1982: A two-dimensional dynamical drainage flow model with Monte Carlo transport and diffusion calculations. ASCOT Report 82-6, Savannah River Laboratory, Aiken, South Carolina.

    Google Scholar 

  • Gross, G., H. Vogel, and G. Wippermann, 1987: Dispersion over and around a steep obstacle for varying thermal stratification — numerical simulations. Atmos. Environ., 21, 483–490.

    Article  Google Scholar 

  • Grossman, P.A., 1989: Kernel density estimation applied to a Lagrangian particle dispersion model. Final report, Chisholm Institute of Technology, Melbourne, Victoria, Australia, 36 pp. + App.

    Google Scholar 

  • Hall, C.D., 1975: The simulation of particle motion in the atmosphere by a numerical random-walk model. Quart. J. Roy. Meteor. Soc., 101, 235–244.

    Article  Google Scholar 

  • Hanna, S.R., 1978: A statistical diffusion model for use with variable wind fields. Proc. Fourth AMS Symp. on Turbulent Diffusion and Air Pollution, American Meteorological Society, Boston, 15–18.

    Google Scholar 

  • Hanna, S.R., 1982: Lagrangian and Eulerian time-scale relations in the daytime boundary layer. J. Appl. Meteor., 20, 242–249.

    Article  Google Scholar 

  • Hanna, S.R., G.A. Briggs, and R.P. Hosker, Jr., 1982: Handbook on Atmospheric Diffusion, DOE/TIC-11223 (DE2002045). Technical Information Center, U.S. Department of Energy, 102 pp.

    Google Scholar 

  • Hurley, P. and W. Physick, 1990: A fumigation model incorporating a Lagrangian particle approach. Atmos. Environ. (Submitted).

    Google Scholar 

  • Kao, C.-Y.J. and T. Yamada, 1988: Use of the CAPTEX data for evaluations of a long-range transport numerical model with a four-dimensional data assimilation technique. Mon. Wea. Rev., 116, 293–306.

    Article  Google Scholar 

  • Klug, W., P.J.H. Builtjes, H. van Dop, N.D. van Egmond, H. Glaab, D. Gömer, B.J. de Haan, K.D.V.D. Hout, N. Kesseboom, R. Röckle, and C. Veldt, 1985: Comparison between four different interregional air pollution models. In Interregional Air Pollution Modelling: The State of the Art, S. Zwerver and J. van Ham, Eds., Plenum Press, New York, 149–273.

    Chapter  Google Scholar 

  • Kuo, Y.-H., M. Skumanich, P.L. Haagenson, and J.S. Chang, 1985: The accuracy of trajectory models as revealed by the observing system simulation experiments. Mon. Wea. Rev., 113, 1852–1867.

    Article  Google Scholar 

  • Lamb, R.G., 1978: A numerical simulation of dispersion from an elevated point source in the convective planetary boundary layer. Atmos. Environ., 12, 1297–1304.

    Article  Google Scholar 

  • Lamb, R.G., 1980: Mathematical principles of turbulent diffusion modeling. In Atmospheric Planetary Boundary Layer Physics, A. Longhetto, Ed., Elsevier Scientific Publishing Co., New York, 173–210.

    Google Scholar 

  • Lamb, R.G., 1981: A scheme for simulating particle pair motions in turbulent fluid. J. Comp. Physics, 39, 329–346.

    Article  Google Scholar 

  • Lamb, R.G., 1982: Diffusion in the convective boundary layer. In Atmospheric Turbulence and Air Pollution Modelling, F.T.M. Nieuwstadt and H. van Dop, Eds., D. Reidel Publishing Co., Boston, 159–229.

    Google Scholar 

  • Langevin, P., 1908: Sur la théorie du mouvement brownien. Comptes rendus, Académie des Sciences, 146, 530–533.

    CAS  Google Scholar 

  • Legg, B.J., 1983: Turbulent dispersion from an elevated line source: Markov chain simulations of concentration and flux profiles. Quart. J. Roy. Meteor. Soc., 109, 645–660.

    Article  Google Scholar 

  • Legg, B.J. and M.R. Raupach, 1982: Markov-chain simulation of a particle dispersion in inhomogeneous flows: the mean drift velocity induced by a gradient in Eulerian velocity variance. Bound.-Layer Meteor., 24, 3–13.

    Article  Google Scholar 

  • Ley, A.J., 1982: A random walk simulation of two-dimensional turbulent diffusion in the neutral surface layer. Atmos. Environ. 16, 2799–2808.

    Article  CAS  Google Scholar 

  • Ley, A.J. and D.J. Thomson, 1983: A random walk model of dispersion in the diabatic surface layer. Quart. J. Roy. Meteor. Soc., 109, 847–880.

    Article  Google Scholar 

  • Lopez, P.E., P.T. Gannon, SR. D.O. Blanchard, and C.C. Balch, 1984: Synoptic and regional circulation parameters associated with the degree of convective shower activity in south Florida. Mon. Wea. Rev., 112, 686–703.

    Article  Google Scholar 

  • Lorimer, G.S., 1986: The kernel method for air quality modelling — I. Mathematical foundation. Atmos. Environ., 20, 1447–1452.

    Article  CAS  Google Scholar 

  • Lorimer, G.S. and D.G. Ross, 1986: The kernel method of air quality modelling — II. Comparison with analytic solutions. Atmos. Environ., 20, 1773–1780.

    Article  Google Scholar 

  • Luhar, A.K. and R.E. Britter, 1989: A random walk model for dispersion in inhomogeneous turbulence in a convective boundary layer. Atmos. Environ., 23, 1911–1924.

    Article  CAS  Google Scholar 

  • Lyons, W.A., C.S. Keen, and J.A. Schuh, 1983: Modeling mesoscale diffusion and transport processes for releases within coastal zones during land/sea breezes. U.S. Nuclear Regulatory Commission, NUREG/CR-3542, 202 pp.

    Google Scholar 

  • Lyons, W.A., J.A. Schuh, D. Moon, R.A. Pielke, W.R. Cotton, and R.W. Arritt, 1987: Short range forecasting of sea breeze generated thunderstorms at the Kennedy Space Center: A real-time experiment using a primitive equation mesoscale numerical model”. Symposium on Mesoscale Analysis and Forecasting, Incorporating Nowcasting, August 17–19, 1987, Vancouver, British Columbia, Canada, 503-508.

    Google Scholar 

  • Mahrer, Y. and R.A. Pielke, 1977: A numerical study of the airflow over irregular terrain. Beitrage zur Physik der Atmosphare, 50, 98–113.

    Google Scholar 

  • Malm, W., K. Gebhart, D. Latimer, T. Cahill, R. Eldred, R. Pielke, R. Stocker, and J. Watson, 1989: Winter Haze Intensive Tracer Experiment, NPS Final Report, December, Air Quality Division, National Park Service, Fort Collins, Colorado.

    Google Scholar 

  • Marchuk, G.I., 1982: Mathematical issues of industrial effluent optimization. J. Meteor. Soc. Japan, 60, 481–485.

    CAS  Google Scholar 

  • Martin, D., C. Mithieux, and B. Strauss, 1987: On the use of the synoptic vertical wind component in a transport trajectory model. Atmos. Environ., 21, 45–52.

    Article  Google Scholar 

  • McNider, R.T., 1981: Investigation of the impact of topographic circulations on the transport and dispersion of air pollutants. Ph.D. Dissertation, University of Virginia, Charlottesville, 210 pp.

    Google Scholar 

  • McNider, R.T., S.R. Hanna, and R.A. Pielke, 1980: Sub-grid scale plume dispersion in coarse resolution mesoscale models. Proc. Second AMS/APCA Conf. on Applications of Air Pollution Meteorology, March 24–27, New Orleans, Louisiana, American Meteorological Society, Boston, 424–429.

    Google Scholar 

  • McNider, R.T., K.J. Anderson, and R.A. Pielke, 1982: Numerical simulation of plume impaction. Proc. Third AMS Conf. on Applications of Air Pollution Meteorology, January, San Antonio, Texas, American Meteorological Society, Boston, 126–129.

    Google Scholar 

  • McNider, R.T., M.D. Moran, and R.A. Pielke, 1988: Influence of diurnal and inertial boundary layer oscillations on long-range dispersion. Atmos. Environ., 22, 2445–2462.

    Article  CAS  Google Scholar 

  • McQueen, J.T. and R.A. Pielke, 1985: A numerical and climatological investigation of deep convective cloud patterns in south Florida. Atmospheric Science Paper No. 389, Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado.

    Google Scholar 

  • Monin, A.S. and A.M. Yaglom, 1971: Statistical Fluid Mechanics, Vol. 1, MIT Press, Cambridge, Massachusetts, 769 pp.

    Google Scholar 

  • Moran, M.D., R.W. Arritt, M. Segal, and R.A. Pielke, 1986: Modification of regional-scale pollutant dispersion by terrain-forced mesoscale circulations. Transactions of the APCA Second International Specialty Conference on the Meteorology of Acidic Deposition, Albany, New York, March 17–20, 1986, Air Pollution Control Association, Pittsburgh, Pennsylvania, 136–157.

    Google Scholar 

  • Moran, M.D., R.A. Pielke, and R.T. McNider, 1990: Temporal and spatial resolution requirements for regional-scale dispersion models. Proc. 18th NATO/CCMS Int’l Tech. Mtg. on Air Pollution Modeling and Its Application, May 13–17, Vancouver, Canada [This volume].

    Google Scholar 

  • NCAR, 1988: Proceedings of Workshop on Limited-Area Modeling Intercomparison, Nov. 15-18, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado, 244 pp.

    Google Scholar 

  • Pasquill, F. and F.B. Smith, 1983: Atmospheric Diffusion, Third Edition, John Wiley and Sons, New York, 437 pp.

    Google Scholar 

  • Pielke, R.A., 1974: A three-dimensional numerical model of the sea breezes over south Florida. Mon. Wea. Rev., 102, 115–139.

    Article  Google Scholar 

  • Pielke, R.A., 1984: Mesoscale Meteorological Modeling. Academic Press, New York, 612 pp.

    Google Scholar 

  • Pielke, R.A., 1989: Status of mesoscale and subregional models: Volume 2. Mesoscale meteorological models in the United States. Report No. EN-6649, October, Electric Power Research Institute, Palo Alto, California.

    Google Scholar 

  • Pielke, R.A. and Y. Mahrer, 1978: Verification analysis of the University of Virginia three-dimensional mesoscale model prediction over south Florida for July 1, 1973. Mon. Wea. Rev., 106, 1568–1589.

    Article  Google Scholar 

  • Reid, J.D., 1979: Markov chain simulations of vertical dispersion in the neutral surface layer for surface and elevated releases. Bound.-Layer Meteor., 16, 3–22.

    Google Scholar 

  • Runchal, A.K., 1980: A random walk atmospheric dispersion model for complex terrain and meteorological conditions. Proc. Second AMS/APCA Conf. Applications of Air Pollution Meteorology, March 24–27, New Orleans, American Meteorological Society, Boston, 430–437.

    Google Scholar 

  • Sawford, B.L., 1982: Lagrangian Monte Carlo simulation of the turbulent motion of a pair of particles. Quart. J. Roy. Meteor. Soc., 108, 207–213.

    Article  Google Scholar 

  • Sawford, B.L., 1984: The basis for, and some limitations of, the Langevin equation in atmospheric relative dispersion modelling. Atmos. Environ., 18, 2405–2411.

    Article  CAS  Google Scholar 

  • Sawford, B.L., 1985: Lagrangian statistical simulation of concentration mean and fluctuation fields. J. Climate Appl. Meteor., 24, 1152–1166.

    Article  CAS  Google Scholar 

  • Sawford, B.L. and F.M. Guest, 1987: Lagrangian stochastic analysis of flux-gradient relationships in the convective boundary layer. J. Atmos. Sci., 44, 1152–1165.

    Article  Google Scholar 

  • Sawford, B.L. and F.M. Guest, 1988: Uniqueness and universality of Lagrangian stochastic models of turbulent dispersion. Proc. Eighth AMS Symp. on Turbulence and Diffusion, April 25–29, San Diego, American Meteorological Society, Boston, 96–99.

    Google Scholar 

  • Schorling, M., H.-U. Mast, and J. Schmidt, 1986: Lagrangian simulation of neutral and heavy gases in complex terrain and streets. Unpublished manuscript, Hauptabteilung Systemstudien, Industrieanlagen-Betriebsgesellschaft, Ottobrunn, West Germany.

    Google Scholar 

  • Seigneur, C., 1989: Status of subregional and mesoscale models. Volume 1: Air quality models. Report No. EN-6649, March, Electric Power Research Institute, Palo Alto, California.

    Google Scholar 

  • Segal, M. and R.A. Pielke, 1981: Numerical model simulation of biometeorological heat load conditions — summer day case study for the Chesapeake Bay area. J. Appl. Meteor., 20, 735–749.

    Article  Google Scholar 

  • Segal, M., R.A. Pielke, and Y. Mahrer, 1980: Quantitative assessment of air quality in the greater Chesapeake Bay area using a three-dimensional mesoscale atmospheric model. Proc. Symposium on Intermediate Range Atmospheric Transport Processes and Technology Assessment, October 1–3, Gatlinburg, Tennessee, 105–115.

    Google Scholar 

  • Segal, M., R.T. McNider, R.A. Pielke and D.S. McDougal, 1982: A numerical model simulation of the regional air pollution meteorology of the Greater Chesapeake Bay area — summer day case study. Atmos. Environ., 16, 1381–1397.

    Article  CAS  Google Scholar 

  • Segal, M., R.A. Pielke, R.W. Arritt, M.D. Moran, C.-H. Yu, and D. Henderson, 1986: Southern Florida air pollution climatology study and selected episodic impacts. Report prepared for Air Quality Division, National Park Service, Department of the Interior under Contract NA81RAH00001, Amendment 17, Item 15, Denver, Colorado, 237 pp.

    Google Scholar 

  • Segal, M., R.A. Pielke, R.W. Arritt, M.D. Moran, C.-H. Yu, and D. Henderson, 1988: Application of a mesoscale atmospheric dispersion modeling system to the estimation of SO2 concentrations from major elevated sources in southern Florida. Atmos. Environ., 22, 1319–1334.

    Article  CAS  Google Scholar 

  • Snow, J.W., 1981: Wind power assessment along the Atlantic and Gulf coasts of the U.S. Ph.D. Dissertation, Dept. of Environmental Sciences, University of Virginia, Charlottesville.

    Google Scholar 

  • Steyn, D.G. and I.G. McKendry, 1988: Quantitative and qualitative evaluation of a three-dimensional mesoscale numerical model simulation of a sea breeze in complex terrain. Mon. Wea. Rev., 116, 1914–1926.

    Article  Google Scholar 

  • Stocker, R.A. and R.A. Pielke, 1990: Source attribution during WHITEX — A modeling study. Proc. A WMA/EPA International Speciality Conference on Visibility and Fine Particles, Estes Park, Colorado, October 15–19, 1989, Air Waste Management Association, Pittsburgh, Pennsylvania (In press).

    Google Scholar 

  • Taylor, G.E. and R.A. Schumann, 1986: A description of the Meteorological and Range Safety Support (MARSS) System. Preprints, Fifth AMS/APCA Conference on Applications of Air Pollution Meteorology, American Meteorological Society, Boston, 133–136.

    Google Scholar 

  • Taylor, G.E., C.R. Parks, M.K. Atchison, G.W. Drape, A. Dianic, D. Nuggent, B. Jubach, and H. Firstenberg, 1989: KABLE data analysis and EMERGE sea breeze algorithm evaluation. Final Report ARS-MPR-89-23, ENSCO, Inc., 66 pp.

    Google Scholar 

  • Thomson, D.J., 1984: Random walk modelling of diffusion in inhomogeneous turbulence. Quart. J. Roy. Meteor. Soc., 110 1107–1120.

    Article  Google Scholar 

  • Thomson, D.J., 1986a: A random walk model of dispersion in turbulent flows and its application to dispersion in a valley. Quart. J. Roy. Meteor. Soc., 112, 511–530.

    Article  Google Scholar 

  • Thomson, D.J., 1986b: On the relative dispersion of two particles in homogeneous stationary turbulence and the implications for the size of concentration fluctuations at large times. Quart J. Roy. Meteor. Soc., 112, 890–894.

    Article  Google Scholar 

  • Thomson, D.J., 1987: Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech., 180, 529–556.

    Article  CAS  Google Scholar 

  • Thomson, R.B., R.P. Angle, and S. Sakiyama, 1987: Selecting air quality-acid deposition models for mesoscale application. J. Air Pollut. Control Assoc., 37, 260–265.

    CAS  Google Scholar 

  • Turner, D.B., L.W. Bender, T.E. Pierce, and W.B. Petersen, 1989: Air quality simulation models from EPA. Environ. Software, 4, 52–61.

    Article  Google Scholar 

  • Uliasz, M., 1983: Application of the perturbation theory to sensitivity analysis of an air pollution model. Zeitschrift für Meteorology, 33, 355–362.

    Google Scholar 

  • Uliasz, M., 1985: Comparison of the sensitivity analysis methods for meteorological models. Zeitschrift für Meteorologie, 35, 340–348.

    Google Scholar 

  • Uliasz, M., 1990a: Development of the mesoscale dispersion modeling system using personal computers. Part I: Models and computer implementation. Zeitschrift für Meteorologie, 40, No 2, 104–114.

    Google Scholar 

  • Uliasz, M., 1990b: Development of a mesoscale dispersion modeling system using personal computers. Part II. Numerical simulations. Zeitschrift für Meteorologie (In press).

    Google Scholar 

  • Uliasz, M. and R.A. Pielke, 1990: Application of the receptor oriented approach in mesoscale dispersion modeling. Proc., 18th ITM on Air Pollution Modeling and Its Application, May 14–17, Vancouver, Canada [This volume].

    Google Scholar 

  • van Dop, H., F.T.M. Nieuwstadt, and J.C.R. Hunt, 1985: Random walk models for particle displacements in inhomogeneous unsteady turbulent flows. Phys. Fluids, 28, 1639–1653.

    Article  Google Scholar 

  • van Egmond, N.D. and H. Kesseboom, 1983: Mesoscale air pollution dispersion models. — I. Eulerian grid models. Atmos. Environ., 17, 257–265.

    Article  Google Scholar 

  • Venkatram, A., P.K. Karamchandani, and P.K. Misra, 1988: Testing a comprehensive acid deposition model. Atmos. Environ., 22, 737–747.

    Article  CAS  Google Scholar 

  • Walklate, P.J., 1987: A random-walk model for dispersion of heavy particles in turbulent air flow. Bound.-Layer Meteor., 39, 175–190.

    Article  Google Scholar 

  • Wilson, J.D., G.W. Thurtell, and G.E. Kidd, 1981a: Numerical simulation of particle trajectories in inhomogeneous turbulence, I: Systems with constant turbulent velocity scale. Bound.-Layer Meteor., 21, 295–313.

    Article  Google Scholar 

  • Wilson, J.D., G.W. Thurtell, and G.E. Kidd, 1981b: Numerical simulation of particle trajectories in inhomogeneous turbulence, II: Systems with variable turbulent velocity scale. Bound.-Layer Meteor., 21, 423–441.

    Article  Google Scholar 

  • Wilson, J.D., B.J. Legg, and D.J. Thomson, 1983: Calculation of particle trajectories in the presence of a gradient in turbulent-velocity variance. Bound.-Layer Meteor., 27, 163–169.

    Article  Google Scholar 

  • Yamada, T. and S. Bunker, 1988: Development of a nested grid, second moment turbulence closure model and application to the 1982 ASCOT Brush Creek data simulation. J. Appl. Meteor., 27, 562–578.

    Article  Google Scholar 

  • Yu, C.-H. and R.A. Pielke, 1986: Mesoscale air quality under stagnant synoptic cold season conditions in the Lake Powell area. Atmos. Environ., 20, 1751–1762.

    Article  Google Scholar 

  • Zannetti, P., 1984: New Monte Carlo scheme for simulating Lagrangian particle diffusion with wind shear effects. Appl. Math. Modelling, 8, 188–192.

    Article  Google Scholar 

  • Zannetti, P., 1986: Monte-Carlo simulation of auto-and cross-correlated turbulent velocity fluctuations (MC-LAGPAR II MODEL). Environ. Software, 1, 26–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pielke, R.A. et al. (1991). Regional and Mesoscale Meteorological Modeling as Applied to Air Quality Studies. In: van Dop, H., Steyn, D.G. (eds) Air Pollution Modeling and Its Application VIII. NATO · Challenges of Modern Society, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3720-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3720-5_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6655-3

  • Online ISBN: 978-1-4615-3720-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics