Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 203))

  • 251 Accesses

Abstract

Psychophysical and electroretinographic observations in normal and achromat observers suggest that human rod signals travel through two retinal pathways (Conner, 1982; Sharpe, Stockman & MacLeod, 1989; Stockman et al., 1991). One pathway--slow and sensitive--is accessible in the dark; whereas the other--fast and insensitive--becomes prominent at higher intensities. These two pathways must diverge at or before the outer plexiform layer, since both the slow and the fast signals are evident in the b-wave of the electroretinogram (ERG). But, because the two signals can also be demonstrated to interact and extinguish the b-wave, they probably also reconverge at a very early stage in the retina. These findings accord to some extent with anatomical and electrophysiological observations of the mammalian retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelson, E.H., 1982, Saturation and adaptation in the rod system. Vision Research 22:1299–1312.

    PubMed  CAS  Google Scholar 

  • Aguilar, M. and Stiles, W.S., 1954, Saturation of the rod mechanism of the retina at high levels of stimulation. Optica Acta 1:59–65.

    Google Scholar 

  • Alexander, K.R., and Fishman, G.A. 1984, Rod-cone interaction in flicker perimetry. British Journal of Ophthalmolgy 68:303–309.

    CAS  Google Scholar 

  • Alexander, K.R., and Fishman, G.A. 1985, Rod-cone interaction in flicker perimetry: evidence for a distal retinal locus. Documenta Ophthalmologica 60:3–36.

    PubMed  CAS  Google Scholar 

  • Alpern, M., Falls, H.F., and Lee, G.B. 1960, The enigma of typical total monochromacy. American Journal of Ophthalamolgy 50:996–1012.

    CAS  Google Scholar 

  • Andrews, D.P. and Hammond, P., 1970, Suprathreshold spectral properties of single optic tract fibres in cat, under mesopic adaptation: Cone-rod interaction. Journal of Physiology,London 209:83–103.

    CAS  Google Scholar 

  • Arden, G.B. and Frumkes, T.E. 1986, Stimulation of rods can increase cone flicker ERGs in man. Vision Research 26:711–721.

    PubMed  CAS  Google Scholar 

  • Arden, G.B. and Hogg, C.R., 1985, Rod-cone interaction and analysis of retinal disease. British Journal of Ophthalmology 69:404–415.

    PubMed  CAS  Google Scholar 

  • Barlow, H.B., Fitzhugh, R., and Kuffler, S.W. 1957, Change of organization in the receptive fields of the cat’s retina during dark adaptation. Journal of Physiology, London 137:338–354.

    CAS  Google Scholar 

  • Barlow, H.B. and Levick, W.R., 1969, Three factors limiting the reliable detection of light by retinal ganglion cells of the cat. Journal of Physiology,London 200:1–24.

    CAS  Google Scholar 

  • Barlow, H.B., Levick, W.R., and Yoon, M., 1971, Responses to single quanta of light in retinal ganglion cells of the cat. Vision Research Supplement 3:87–101.

    Google Scholar 

  • Bauer, G.M., Frumkes, T.E., and Nygaard, R.W., 1983, The signal-to-noise characteristics of rod-cone interaction. Journal of Physiology,London, 337:101–119.

    CAS  Google Scholar 

  • Baylor, D.A., Fuortes, M.G.F., and O’Bryan, P.M., 1971, Receptive fields of cones in the retina of the turtle. Journal of Physiology, London,214:265–294.

    CAS  Google Scholar 

  • Baylor, D.A., Lamb, T.D., and Yau, K.-W., 1979, The membrane current of single rod outer segments. Journal of Physiology,London, 288:589–611.

    CAS  Google Scholar 

  • Baylor, D.A., Nunn, B.J., and Schnapf, J.L., 1984, The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca Fascicularis. Journal of Physiology, London 357:575–607.

    CAS  Google Scholar 

  • van den Berg, T.J.T.P. and Spekreijse, H., 1977, Interaction between rod and cone signals studied with temporal sine wave stimulation. Journal of the Optical Society of America 67:1210–1217.

    PubMed  Google Scholar 

  • Blakemore, C.B. and Rushton, W.A.H., 1965, Dark adaptation and increment threshold in a rod monochromat. Journal of Physiology, London 181:612–628.

    CAS  Google Scholar 

  • Bloomfield, S.A. and Miller, R.F., 1982, A physiological and morphological study of the horizontal cell types of the rabbit retina. Journal of comparative Neurology 208:288–303.

    PubMed  CAS  Google Scholar 

  • Boycott, B.B., Hopkins, J.M., and Sperling, H.G., 1987, Cone connections of the horizontal cells of the rhesus monkey’s retina. Proceedings of the Royal Society B229:345–379.

    Google Scholar 

  • Buck, S.L., 1985, Cone-rod interaction over time and space. Vision Research 25:907–916.

    PubMed  CAS  Google Scholar 

  • Cajal, S.R., 1893, The vertebrate retina (translated by Maguire, D. and Rodieck, R.W.). In R.W. Rodieck, The vertebrate retina: Principles of structure and function, Appendix I 1973). San Francisco: W.H. Freeman.

    Google Scholar 

  • Chase, L. and Dowling, J.E., 1990, A comparison of rod and cone pathways in the primate retina. Investigative Ophthalmology & Visual Science Supplement 31:207.

    Google Scholar 

  • Coletta, N.J. and Adams, A.J., 1984, Rod-cone interactions in flicker detection. Vision Research 24:1333–1340.

    PubMed  CAS  Google Scholar 

  • Conner, J.D, 1982, The temporal properties of rod vision. Journal of Physiology, London 332:139–155.

    CAS  Google Scholar 

  • Conner, J.D. and MacLeod, D.I.A., 1977, Rod photoreceptors detect rapid flicker. Science 195:689–699.

    Google Scholar 

  • Curcio, C.A., Sloan, K.R., Packer, O., Hendrickson, A.E., and Kalina, R.E., 1987), Distribution of cones in human and monkey retina: individual variability and radial asymmetry. Science 236:579–582.

    PubMed  CAS  Google Scholar 

  • Dacheux, R.F. and Raviola, E., 1982, Horizontal cells in the retina of the rabbit. Journal of Neuroscience 2: 1486–1493.

    PubMed  CAS  Google Scholar 

  • Dacheux, R.F. and Raviola, E., 1986, The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. Journal of Neuroscience 6:331–345.

    PubMed  CAS  Google Scholar 

  • Daw, N.W., Jensen, R.J., and Brunken, W.J, 1990, Rod pathways in mammalian retinae. Trends in Neuro Sciences 13:110–115.

    CAS  Google Scholar 

  • Daw, N.W. and Pearlman, A.L., 1969, Cat colour vision: one cone process or several? Journal of Physiology, London 201:745–764.

    CAS  Google Scholar 

  • Denny, N., Frumkes, T.E., and Goldberg, S.H., 1990, Comparison of summatory and suppressive rod-cone interaction. Clinical Vision Sciences 5:27–36.

    Google Scholar 

  • Dick, E. and Miller, R.F., 1978, Light-evoked potassium activity in mudpuppy retina: its relationship to the b-wave of the electroretinogram. Brain Research 154:388–394.

    PubMed  CAS  Google Scholar 

  • Dodt, E. and Jessen, K.H., 1961, The duplex nature of the retina of the nocturnal gecko as reflected in the electroretinogram. Journal of General Physiology 44:1143–1158.

    PubMed  CAS  Google Scholar 

  • Dowling, J.E., 1967, The site of visual adaptation. Science 155:273–279.

    PubMed  CAS  Google Scholar 

  • Dowling, J.E., 1987, The retina, an approachable part of the brain Belknap Press of Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Dowling, J.E. and Ehinger, B., 1975, Synaptic organization of the amine-containing interplexiform cells of the goldfish and cebus monkey retina. Science 188:270–273.

    PubMed  CAS  Google Scholar 

  • Dowling, J.E., Ehinger, B., and Floren, I., 1980, Fluorescence and electron microscopical observations of the amine-accumulating neurons of the cebus monkey retina. Journal of comparative Neurology 192:655–685.

    Google Scholar 

  • Enroth-Cugell, C., Hertz, B.G., and Lennie, P., 1977, Cone signals in the cat’s retina. Journal of Physiology, London 269:273–296.

    CAS  Google Scholar 

  • Eysteinsson, T. and Frumkes, T.E., 1989, Physiological and pharmacological analysis of suppressive rod-cone interaction. Journal of Neurophysiology 61:866–877.

    PubMed  CAS  Google Scholar 

  • Fach, C.C., Sharpe, L.T., and Stockman, A., 1991, The field adaptation of the human rod visual system (submitted).

    Google Scholar 

  • Famiglietti, E.V. and Kolb, H., 1975, A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Research 84:293–300.

    PubMed  Google Scholar 

  • Frumkes, T.E. and Eysteinsson, T., 1987, Suppressive rod-cone interaction in distal vertebrate retina: Intracellular records from xenopus and necturus. Journal of Neurophysiology 57:1361–1382.

    PubMed  CAS  Google Scholar 

  • Frumkes, T.E., Naarendorp, F., and Goldberg, S.H., 1986, The influence of cone adaptation upon rod mediated flicker. Vision Research 26:1167–1176.

    PubMed  CAS  Google Scholar 

  • Frumkes, T.E., Sekuler, M.D., Barris, M.C., Reiss, E.H., and Chalupa, L.M., 1973, Rod-cone interaction in human scotopic vision. I: temporal analysis. Vision Research 13:269–1282.

    Google Scholar 

  • Frumkes, T.E. and Temme, L.A., 1977, Rod-cone interaction in human scotopic vision--II. Cones influence rod increment thresholds. Vision Research 17:673–679.

    PubMed  CAS  Google Scholar 

  • Glickstein, M. and Heath, G.G., 1975, Receptors in the monochromat eye. Vision Research 15:633–636.

    PubMed  CAS  Google Scholar 

  • Goldberg, S.H., Frumkes, T.E., and Nygaard, R.W., 1983, Inhibitory influence of unstimulated rods in the human retina: evidence provided by examining cone flicker. Science 221:180–182.

    PubMed  CAS  Google Scholar 

  • Gouras, P. and Link, K., 1966, Rod and cone interaction in dark-adapted monkey ganglion cells. Journal of Physiology, London,184:499–510.

    CAS  Google Scholar 

  • Green, D.G. and Siegel, I.M., 1975, Double branched flicker fusion curves from the all-rod skate retina. Science 188:1120–1122.

    PubMed  CAS  Google Scholar 

  • Grünert, U. and Martin, P.R., 1990, Rod bipolar cells in the macaque monkey retina: Light and electron microscopy. Investigative Ophthalmology & Visual Science Supplement 31:536.

    Google Scholar 

  • Gurevich, L., Stockton, R.A., and Slaughter, M.M., 1990, Comparisons of the waveforms of the B-wave of the ERG and ON bipolar cells. Investigative Ophthalmology & Visual Science Supplement 31:114.

    Google Scholar 

  • Hassin, G. and Witkovsky, P., 1983, Intracellular recordings from identified photoreceptors and horizontal cells of the xenopus retina. Vision Research 23:921–932.

    PubMed  CAS  Google Scholar 

  • Hallett, P.E., 1962, Scotopic acuity and absolute threshold in brief flashes. Journal of Physiology,London, 163:175–189.

    CAS  Google Scholar 

  • Harding, T.H. and Enroth-Cugell, C., 1978, Absolute dark sensitivity and centre size in cat retinal ganglion cells. Brain Research 153:157–162.

    PubMed  CAS  Google Scholar 

  • Hecht, S., Shlaer, S., Smith, E.L., Haig, C., and Peskin, J.C., 1938, The visual functions of a completely colorblind person. American Journal of Physiology 123:94–95.

    Google Scholar 

  • Hecht, S., Shlaer, S., Smith, E.L., Haig, C., and Peskin, J.C., 1948, The visual functions of the complete colorblind. Journal of General Physiology 31:459–472.

    PubMed  CAS  Google Scholar 

  • Hendrickson, A., Koontz, M.A., Pourcho, R.G., Sarthy, P.V., and Goebel, D.J., 1988, Localization of glycine-containing neurons in the macaca monkey retina. Journal of comparative Neurology 273:473–487.

    PubMed  CAS  Google Scholar 

  • Hess, R.F. and Nordby, K., 1986, Spatial and temporal limits of vision in the achromat Journal of Physiology,London 371:365–385.

    CAS  Google Scholar 

  • Hofmann, M.I., Barnes, C.S., and Hallett, P.E., 1990, Detection of briefly flashed sine-gratings in dark-adapted vision. Vision Research 30:1453–1466.

    PubMed  CAS  Google Scholar 

  • Kline, R.P., Ripps, H., and Dowling, J.E., 1978, Generation of b-wave currents in the skate retina. Proceedings of the National Academy of Sciences,U.S.A., 75:5727–5731.

    CAS  Google Scholar 

  • Knight, R., Sanocki, E., and Buck, S.L., 1990, Field adaptation of dual rod mechanisms in the detection of 15 Hz flicker. Investigative Ophthalmology & Visual Science (supplement) 31:494.

    Google Scholar 

  • Kolb, H., 1977, The organization of the outer plexiform layer in the retina of the cat: electron microscopic observations. Journal of Neurocytology 6:131–153.

    PubMed  CAS  Google Scholar 

  • Kolb, H., 1979, The inner plexiform layer in the retina of the cat: electron microscopic observations. Journal of Neurocytology 8:295–329.

    PubMed  CAS  Google Scholar 

  • Kolb, H. and Famiglietti, E.V., 1974, Rod and cone pathways in the inner plexiform layer of cat retina. Science 186:47–49.

    PubMed  CAS  Google Scholar 

  • Kolb, H., Mariani, A., and Gallego, A., 1980, A second type of horizontal cells in the monkey retina. Journal of comparative Neurology 189:31–44.

    PubMed  CAS  Google Scholar 

  • Kolb, H. and Nelson, R., 1981, Amacrine cells of the cat retina. Vision Research 21: 1625–1633.

    PubMed  CAS  Google Scholar 

  • Kolb, H. and Nelson, R., 1983, Rod pathways in the retina of the cat. Vision Research 23:301–312

    PubMed  CAS  Google Scholar 

  • Kolb, H. and Nelson, R., 1984, Neural architecture of the cat retina. Progress in Retinal Research 3:21–60.

    Google Scholar 

  • Kolb, H., Nelson, R., and Mariani, A., 1981, Amacrine cells, bipolar cells, and ganglion cells of the cat retina: a Golgi study. Vision Research 21:1081–1114.

    PubMed  CAS  Google Scholar 

  • Kolb, H. and West, R., 1977, Synaptic connections of the interplexiform cell in the retina of the cat. Journal of Neurocytology 6:155–170.

    PubMed  CAS  Google Scholar 

  • von Kries, J., 1894, Ober den Einfluß der Adaptation auf Licht-und Farbenempfindung und über die Funktion der Stäbchen. Bericht der naturforschenden Gesellschaft zu Freiburg im Breisgau 9 (2):61–70.

    Google Scholar 

  • von Kries, J., 1929, Zur Theorie des Tages-und Dämmerungssehens. In A. Bethe, G. von Bergmann, G. Emden, and A. Ellinger (Eds), Handbuch der normalen und pathologischen Physiologie, Vol. XII (1), Receptionsorgane 2 (Photoreceptoren I) (pp. 679–713). Berlin: Springer-Verlag.

    Google Scholar 

  • Lewis, S.D. and Mandelbaum, J., 1943, Achromatopsia: report of three cases. Archiv Ophthalmologica 30:225–231.

    Google Scholar 

  • Loew, E.R. and Arden, G.B., 1985, Inhibition of cones by rods in the mammalian eye as demonstrated electrophysiologically using flashing multipoint focal stimuli. Investigative Ophthalmology & Visual Science Supplement 26:115.

    Google Scholar 

  • MacLeod, D.I.A., 1972, Rods cancel cones in flicker. Nature 235:173–174.

    PubMed  CAS  Google Scholar 

  • MacLeod, D.I.A., 1974, Psychophysical studies of signals from rods and cones. Unpublished doctoral dissertation, Cambridge University.

    Google Scholar 

  • Mariani, A.P., 1982, Biplexiform cells: ganglion cells of the primate retina that contact photoreceptors. Science 216:1134–1136.

    PubMed  CAS  Google Scholar 

  • Mariani, A.P., 1988, Amacrine cells of the rhesus monkey retina. Investigative Ophthalmology & Visual Science Supplement 29:198.

    Google Scholar 

  • Mastronarde, D.N., 1983, Correlated firing of cat retinal ganglion cells. II. Responses of X- and Y-cells to single quantal events. Journal of Neurophysiology 49:325–349.

    PubMed  CAS  Google Scholar 

  • McGuire, B.A., Stevens, J.K., and Sterling, P., 1984, Microcircuitry of bipolar cells in cat retina. Journal of Neurosciences 4:2920–2938.

    CAS  Google Scholar 

  • Miller, R.F. and Dowling, J.E., 1970, Intracellular responses of the Müller (glial) cells of mudpuppy retina: Their relation to b-wave of the electroretinogram. Journal of Neurophysiology 33:323–341.

    PubMed  CAS  Google Scholar 

  • Müller, F., Wässle, H., and Voigt, T., 1988, Pharmacological modulation of the rod pathway in the cat retina. Journal of Neurophysiology 59:1657–1672.

    PubMed  Google Scholar 

  • Naka, K.-I., 1972, The horizontal cells. Vision Research 12:573–588.

    PubMed  CAS  Google Scholar 

  • Nakamura, Y., McGuire, B.A., and Sterling, P., 1980, Interplexiform cell in cat retina: Identification of uptake of o-[3H]aminobutyric acid and serial reconstruction. Proceedings of the National Academy of Sciences,Washington D.C.,77:658–661.

    CAS  Google Scholar 

  • Nelson, R., 1977, Cat cones have rod input: A comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. Journal of Comparative Neurology 172:107–135.

    Google Scholar 

  • Nelson, R., 1982, All amacrine cells quicken time course of rod signals in the cat retina. Journal of Neurophysiology 47:928–947.

    PubMed  CAS  Google Scholar 

  • Nelson, R., Famiglietti, E.V., and Kolb, H., 1978, Intracellular staining reveals different levels of stratification for on-and off-center ganglion cells in cat retina. Journal of Neurophysiology 41:472–483.

    PubMed  CAS  Google Scholar 

  • Nelson, R. and Kolb, H., 1983, Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Vision Research 23:1183–1195.

    PubMed  CAS  Google Scholar 

  • Nelson, R. and Kolb, H., 1984, Amacrine cells in scotopic vision. Ophthalmological Research 16:21–26. Neurophysiology 54:592–614.

    Google Scholar 

  • Nelson, R., von Lützow, A., Kolb, H., and Gouras, P., 1975, Horizontal cells in cat retina with independent dendritic systems. Science 189:137–139.

    PubMed  CAS  Google Scholar 

  • Noell, W.K., 1954, The origin of the electroretinogram. American Journal of Ophthalmology 28:78–90.

    Google Scholar 

  • Nygaard, R.W. and Frumkes, T.E., 1985, Frequency dependence in scotopic flicker sensitivity. Vision Research 25:115–127.

    PubMed  CAS  Google Scholar 

  • Osterberg, G.A., 1935, Topography of the layer of rods and cones in the human retina. Acta ophthalmologica, Kobenhavn, supplement 6:1–102.

    Google Scholar 

  • Parinaud, H., 1881, Des modifications pathologiques de la perception de la lumiere, des couleurs, et des formes, et des differentes especes de sensitibilite oculaire. Comptes rendus hebdomadaires des seances et memoires de la Societe de biologie, Paris, 33:222.

    Google Scholar 

  • Pflug, R. and Nelson, R., 1986, Enhancement of red cone flicker by rod selective backgrounds in cat horizontal cells. Neuroscience Abstracts 16:402.

    Google Scholar 

  • Polyak, S.L., 1941, The Retina. Chicago: Chicago University Press.

    Google Scholar 

  • Raviola, E. and Gilula, N.B, 1973, Gap junctions between photoreceptor cells in the vertebrate retina. Proceedings of the National Academy of Sciences, Washington D.C., 70, 1677–1681.

    CAS  Google Scholar 

  • Rodieck, R.W., 1988, The primate retina. Comparative Primate Biology 4, Neurosciences:302–278.

    Google Scholar 

  • Schultze, M., 1866, Zur Anatomie und Physiologie der Retina. Archiv far mikroskopische Anatomie (und Entwicklungsmechanik) 2:175–286.

    Google Scholar 

  • Shapley, R.M. and Enroth-Cugell, C., 1984, Visual adaptation and retinal gain controls. Progress in Retinal Research 3:263–346.

    Google Scholar 

  • Sharpe, L.T., Fach, C., Nordby, K., and Stockman, A., 1989, The incremental threshold of the rod visual system and Weber’s law. Science 244:354–356.

    PubMed  CAS  Google Scholar 

  • Sharpe, L.T., Fach, C.C., and Stockman, A., 1991, Rod flicker perception: scotopic duality and cone intrusion (submitted).

    Google Scholar 

  • Sharpe, L.T. and Nordby, K., 1990, The photoreceptors in the achromat. In R. F. Hess, L.T. Sharpe, and K. Nordby (Eds), Night Vision, basic, clinical and applied aspects. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sharpe, L.T., van Norren, D., and Nordby, K., 1988, Pigment regeneration, visual adaptation and spectral sensitivity in the achromat. Clinical Vision Sciences 3:9–17.

    Google Scholar 

  • Sharpe, L.T., Stockman, A., and Macleod, D.I.A., 1989, Rod flicker perception: scotopic duality, phase lags and destructive interference. Vision Research 29:1539–1559.

    PubMed  CAS  Google Scholar 

  • Sharpe, L.T., Stockman, A., and Zrenner, E., 1990, Dual rod pathways. Perception 19: 350.

    Google Scholar 

  • Sloan, L.L., 1954, Congenital achromatopsia: A report of 19 cases. Journal of the Optical Society of America 44:117–128.

    PubMed  CAS  Google Scholar 

  • Sloan, L.L., 1958, The photopic retinal receptors of the typical achromat. American Journal of Ophthalmology 46:81–86.

    PubMed  CAS  Google Scholar 

  • Smith, R.G., Freed, M.A., and Sterling, P., 1986, Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network. The Journal of Neuroscience 6:3505–3517.

    PubMed  CAS  Google Scholar 

  • Smith, V. C. and Pokorny, J., 1975, Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research 15:161–171.

    PubMed  CAS  Google Scholar 

  • Steinberg, R.H., 1969, The rod after-effect in S-potentials from the cat retina. Vision Research 9:1345–1355.

    PubMed  CAS  Google Scholar 

  • Steinberg, R.H., 1971, Incremental responses to light recorded from pigment epithelial cells and horizontal cells of the cat retina. Journal of Physiology, London 217:93–110.

    CAS  Google Scholar 

  • Steinberg, R.H., Reid, M., and Lacey, P.L., 1973, The distribution of rods and cones in the retina of the cat (Felis domesticus). Journal of comparative Neurology 148:229–248.

    PubMed  CAS  Google Scholar 

  • Sterling, P., 1983, Microcircuitry of the cat retina. Annual Review of Neuroscience 6:149–185.

    PubMed  CAS  Google Scholar 

  • Sterling, P., Freed, M., and Smith, R.G., 1986, Microcircuitry and functional architecture of the cat retina. Trends in Neuro Sciences 9:186–192.

    Google Scholar 

  • Stockman, A., Sharpe, L.T., and Zrenner, E., 1990, Scotopic duality in the ERG and in psychophysics. Investigative Ophthalmology & Visual Science (supplement) 31:494.

    Google Scholar 

  • Stockman, A., Sharpe, L.T., Zrenner, E., and Nordby, K., 1991, Slow and fast rod pathways in the human rod visual system (submitted)

    Google Scholar 

  • Stockton, R.A., and Slaughter, M.M., 1987, ON bipolar cell potassium fluxes are uniquely associated with the ERG b-wave. Investigative Ophthalmology & Visual Science Supplement 28:406.

    Google Scholar 

  • Tamura, T., Nakatani, K., and Yau, K.-W., 1989, Light adaptation in cat retinal rods. Science 245:755–758.

    PubMed  CAS  Google Scholar 

  • Toyoda, J.-I. and Tonosaki, K., 1978, Effect of polarization of horizontal cells on the on-center bipolar cells of the carp retina. Nature 276:399–400.

    PubMed  CAS  Google Scholar 

  • Wald, G., 1945, Human color vision and the spectrum. Science 101:653–658.

    PubMed  CAS  Google Scholar 

  • Wässle, H., Müller, F., Voigt, T., and Chun, M.H, 1989, Pharmacological modulation of the dark adapted cat retina. In R. Weiler, and N.N. Osborne (Eds), Neurobiology of the Inner Retina (pp. 247–259). Berlin: Springer-Verlag.

    Google Scholar 

  • Wässle, H. and Riemann, H.J., 1978, The mosaic of nerve cells in the mammalian retina. Proceedings of the Royal Society, London, B200:441–461.

    Google Scholar 

  • Weiler, R., 1977, Die Horizontalzellen der Karpenretina. Doctoral thesis, Universität München.

    Google Scholar 

  • Wen, R., Tucker, J.L., and Oakley, B. I., 1990, Testing the K+/Müller cell hypothesis of the origin of the ERGB-wave. Investigative Ophthalmology & Visual Science Supplement 31:114.

    Google Scholar 

  • Wyszecki, G. and Stiles, W.S., 1982, Color Science, concepts and methods, quantitative data and formulas (2nd Edn). New York: John Wiley.

    Google Scholar 

  • Yang, X.-L. and Wu, S.M., 1989, Effects of background illumination on the horizontal cell responses in the tiger salamander retina. The Journal of Neuroscience 9:815–827.

    PubMed  CAS  Google Scholar 

  • Zrenner, E., Nelson, R., and Mariani, A., 1983, Intracellular recordings from a biplexiform ganglion cell in macaque retina, stained with horseradish peroxidase. Brain Research 262:181–185.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sharpe, L.T., Stockman, A. (1991). Dual Rod Pathways. In: Valberg, A., Lee, B.B. (eds) From Pigments to Perception. NATO ASI Series, vol 203. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3718-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3718-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6654-6

  • Online ISBN: 978-1-4615-3718-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics