Skip to main content

Rutherford Backscattering and Nuclear Reaction Analysis

  • Chapter

Part of the book series: Methods of Surface Characterization ((MOSC,volume 2))

Abstract

This chapter deals with the use of high-energy ion beams in the characterization of solids. In this context “high-energy” refers to positive ions with incident kinetic energies of greater than 25 keV and extends to the region of many MeV. Historically this regime is associated with nuclear physics and the basic processes are of a nuclear type. For surface analysis one picks out the subset of well-understood nuclear processes to apply to materials problems. The primary advantage of these ion scattering techniques is quantitative analysis, which, in turn, results from the successful understanding of these processes by the nuclear physics community. A second main advantage is in-depth profiling in a nondestructive manner.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. B. Brown, C. W. Snyder, W. A. Fowler, and C. C. Lauritsen, Phys. Rev. 82, 159 (1951).

    Google Scholar 

  2. J. A. Davies, in: Material Characterization Using Ion Beams (J. P. Thomas and A. Cachard, eds.), p. 405, Plenum Press, London (1978).

    Google Scholar 

  3. L. C. Feldman and J. M. Poate, Ann. Rev. Mater. Sci. 12, 149 (1982).

    Google Scholar 

  4. W. K. Chu, J. W. Mayer, and M. A. Nicolet, Backscattering Spectrometry, Academic Press, New York (1978).

    Google Scholar 

  5. L. C. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis, Elsevier, New York (1986).

    Google Scholar 

  6. F. Bloch, Ann. Phys. (Leipzig) 16, 287 (1933).

    Google Scholar 

  7. J. F. Ziegler, Helium-Stopping Powers and Ranges in All Elemental Matter, Vol. 4, Pergamon, New York (1977).

    Google Scholar 

  8. L. C. Feldman and S. T. Picraux, in Ion Beam Handbook for Materials Analysis (J. W. Mayer and E. Rimini, eds.), Academic Press, New York (1977).

    Google Scholar 

  9. J. A. Davies and P. R. Norton, Nucl. Instrum Methods 168, 611 (1980).

    Google Scholar 

  10. B. L. Doyle, J. Vac. Sci. Technol. A3, 1374 (1985); and Nucl. Instrum Methods B15, 654 (1986).

    Google Scholar 

  11. J. F. van der Veen, R. G. Smeenk, R. M. Tromp, and F. W. Saris, Surf. Sci. 79, 212 (1979).

    Google Scholar 

  12. W. K. Chu, in: Ion Beam Handbook for Materials Analysis (J. W. Mayer and E. Rimini, eds.), Academic Press, New York (1977).

    Google Scholar 

  13. L. R. Doolittle, Nuc. Instrum. Methods B9, 344 (1985).

    Google Scholar 

  14. J. Lindhard, Mat. Fys. Medd. Dan. Vid. Selsk. 34, 1 (1965).

    Google Scholar 

  15. D. V. Morgan, Channeling, Wiley, New York (1973).

    Google Scholar 

  16. L. C. Feldman, J. M. Mayer, and S. T. Picraux, Materials Analysis by Ion Channeling, Academic Press, New York (1982).

    Google Scholar 

  17. J. H. Barrett, Phys. Rev. B 3, 1527 (1971).

    Google Scholar 

  18. I. Stensgaard, L. C. Feldman, and P. J. Silverman, Surf Sci. 77,513 (1978).

    Google Scholar 

  19. L. C. Feldman, Nucl. Instrum Methods 191, 211 (1981).

    Google Scholar 

  20. L. C. Feldman, in: Ion Beams for Materials Analysis (J. R. Bird and J. S. Williams, eds.), Academic Press, Australia (1989).

    Google Scholar 

  21. I. Stensgaard, L. C. Feldman, and P. J. Silverman, Surf. Sci. 102, 1 (1981).

    Google Scholar 

  22. R. M. Tromp, R. G. Smeenk, and F. W. Saris, Surf. Sci. 104, 13 (1981).

    Google Scholar 

  23. R. J. Culbertson, L. C. Feldman, and P. J. Silverman, Phys. Rev. Lett. 45,2043 (1980).

    Google Scholar 

  24. R. M. Tromp, E. J. van Loenen, M. Iwami, and F. W. Saris, Solid State Commun. 44, 971 (1983).

    Google Scholar 

  25. I. Stensgaard, L. C. Feldman, and P. J. Silverman, Phys. Rev. Lett. 42,247 (1979); and L. C. Feldman, P. J. Silverman, and I. Stensgaard, Surf. Sei. 87,410 (1979).

    Google Scholar 

  26. J. W. M. Frenken and J. F. van der Veen, Phys. Rev. Lett. 54, 134 (1985).

    Google Scholar 

  27. D. L. Adams, H. B. Nielsen, J. N. Andersen, I. Stensgaard, R. Feidenhans’l, and J. E. Sorensen, Phys. Rev. Lett. 49, 669 (1982).

    Google Scholar 

  28. R. Feidenhans’l and I. Stensgaard, Surf. Sci. 133,453 (1983).

    Google Scholar 

  29. Y. Kuk and L. C. Feldman, Phys. Rev. B 30, 5811 (1984).

    Google Scholar 

  30. R. J. Culbertson, L. C. Feldman, P. J. Silverman, and H. Boehm, Phys. Rev. Lett. 47, 657 (1981).

    Google Scholar 

  31. Y. Kuk, L. C. Feldman, and P. J. Silverman, J. Vac. Sci. Technol. A1, 1060 (1983).

    Google Scholar 

  32. H.-J. Gossmann and L. C. Feldman, Phys. Rev. B 32,6 (1985).

    Google Scholar 

  33. E. J. van Loenen, A. E. M. J. Fischer and J. F. van der Veen, Surf. Sci. 155,65 (1985).

    Google Scholar 

  34. R. Haight and L. C. Feldman, J. Appl. Phys. 53, 4884 (1982) and references therein.

    Google Scholar 

  35. J. F. van der Veen, Surf. Sci. Rep. 5, 1 (1985).

    Google Scholar 

  36. N. W. Cheung, L. C. Feldman, P. J. Silverman, and I. Stensgaard, Appl. Phys. Lett. 35, 859 (1979).

    Google Scholar 

  37. F. Besenbacher, I. Stensgaard, and K. Mortensen, Surf. Sci. 191,288 (1987).

    Google Scholar 

  38. W. K. Chu, J. W. Mayer, M.-A. Nicolet, T. M. Buck, G. Amsel, and F. Eisen, Thin Solid Films 17, 1 (1973).

    Google Scholar 

  39. K. N. Tu, W. K. Chu, and J. W. Mayer, Thin Solid Films 25, 403 (1975).

    Google Scholar 

  40. R. M. Tromp, F. Legoues, and P. S. Ho, J. Vac. Sci. Technol. A1, 782 (1985).

    Google Scholar 

  41. J. M. E. Harper, R. J. Colton, and L. C. Feldman, eds., Thin Film Processing and Characterization of High-Temperature Superconductors, American Institute of Physics, New York (1988).

    Google Scholar 

  42. F. W. Saris, W. K. Chu, C. A. Cheng, R. Ludeke, and L. Esaki, Appl. Phys. Lett. 37, 931 (1980).

    Google Scholar 

  43. R. T. Tung, J. C. Bean, J. M. Gibson, J. M. Poate, and D. C. Jacobson, Appl. Phys. Lett. 40, 684 (1982).

    Google Scholar 

  44. R. S. Blewer, Appl. Phys. Lett. 23, 593 (1973).

    Google Scholar 

  45. W. A. Lanford, H. P. Troutvelter, J. F. Ziegler, and J. Keller, Appl. Phys. Lett. 28, 566 (1976).

    Google Scholar 

  46. L. C. Feldman, E. N. Kaufman, J. M. Poate, and W. M. Augustyniak, in Ion Implantation in Semiconductors and Other Materials (B. L. Crowder, ed.), Plenum Press, New York (1973).

    Google Scholar 

  47. J. M. Poate and A. G. Cullis, in Treatise on Materials Science and Technology, (J. Hivonen, ed.), Academic Press, New York (1980).

    Google Scholar 

  48. G. K. Celler, P. L. F. Hemment, K. W. West, and J. M. Gibson, Appl. Phys. Lett. 48, 532 (1986).

    Google Scholar 

  49. A. E. White, K. T. Short, R. C. Dynes, J. P. Garno, and J. M. Gibson, Appl. Phys. Lett. 50, 95 (1987).

    Google Scholar 

  50. J. M. Poate and J. W. Mayer, eds., Laser Annealing of Semiconductors, Academic Press, New York (1982).

    Google Scholar 

  51. R. P. Sharma, L. E. Rehn, P. M. Baldo, and J. Z. Liu, Phys. Rev. B 38, 9287 (1988).

    Google Scholar 

  52. D. S. Gemmell, Rev. Mod. Phys. 46, 129 (1974).

    Google Scholar 

  53. S. J. Allen, L. C. Feldman, D. B. McWhan, J. P. Remeika, and R. E. Walstedt, in Superionie Conductors (G. D. Mahon and W. L. Roth, eds.), Plenum Press, New York (1976).

    Google Scholar 

  54. Y. Kuk and L. C. Feldman, Phys. Rev. B 30, 5811 (1984); and S. M. Yalisove, W. R. Graham, E. D. Adams, M. Copel, and T. Gustafsson, Surf Sci. 171, 400 (1986).

    Google Scholar 

  55. J. F. van der Veen, R. M. Tromp, R. G. Smeenk, and F. W. Saris, Surf. Sci. 82,468 (1979).

    Google Scholar 

  56. T. E. Jackman, K. Griffiths, J. A. Davies, and P. R. Norton, J. Chem. Phys. 79,3529 (1983).

    Google Scholar 

  57. W. M. Frenken and J. F. van der Veen, Phys. Rev. Lett. 54, 134 (1985).

    Google Scholar 

  58. I. Stensgaard, K. G. Purcell, and D. A. King, Phys. Rev. B 39, 897 (1989).

    Google Scholar 

  59. J. M. Phillips, L. C. Feldman, J. M. Gibson, and M. L. McDonald, Thin Solid Films 107,217 (1983).

    Google Scholar 

  60. A. T. Fiory, J. C. Bean, L. C. Feldman, and I. K. Robinson J. Appl. Phys. 56, 1227 (1984).

    Google Scholar 

  61. L. C. Feldman, J. Bevk, B. A. Davidson, HA. Gossmann, and J. P. Mannaerts, Phys. Rev. Lett. 59, 664 (1987); and W. K. Chu, F. W. Saris, C. A. Chang, R. Ludeke, and L. Esaki, Phys. Rev. B 26, 1999 (1982).

    Google Scholar 

  62. R. T. Tung, J. M. Gibson, and J. M. Poate, Phys. Rev. Lett. 50, 429 (1983).

    Google Scholar 

  63. H.-J. Gossmann, L. C. Feldman, and W. M. Gibson, Surf Sci. 155,413 (1985).

    Google Scholar 

  64. J. Linnros, G. Holmen, and B. Svensson, Phys. Rev. B 32, 2770 (1985).

    Google Scholar 

  65. S. T. Picraux and P. Rai-Chadbury, in Semiconductor Characterization Techniques (P. A. Barnes and G. A. Rozgonyi, eds.), Electrochemical Society, Princeton (1978).

    Google Scholar 

  66. A. K. Sinha and J. M. Poate, Appl. Phys. Lett. 23,666 (1973).

    Google Scholar 

  67. S. M. Mayers and J. E. Smugeresky, Metal Trans. 7A, 795 (1976).

    Google Scholar 

  68. M. Guttmann, P. R. Krake, F. Abel, G. Amsel, M. Bruneaux, and C. Cohen, Sero Metall. 5,479 (1971).

    Google Scholar 

  69. D. V. Morgan, M. J. Howes, and C. J. Madoms, J. Electrochem Soc. 123,295 (1976).

    Google Scholar 

  70. R. S. Williams, Solid State Commun. 41, 153 (1982).

    Google Scholar 

  71. Z. L. Liau and J. W. Mayer, in Ion Implantation (J. K. Hirvonen, ed.), Academic Press, New York (1980).

    Google Scholar 

  72. G. S. Oeherlein, R. M. Tromp, J. C. Tsang, Y. H. Lee, and E. J. Petrillo, J. Electrochem. Soc. 132, 1441 (1985).

    Google Scholar 

  73. B. Robinson, T. N. Nguyen, and M. Copel, in Deposition and Growth: Limits tor Microelectronics (G. W. Rubloff, ed.), American Institute of Physics, New York (1988).

    Google Scholar 

  74. W. C. Dautremont-Smith and L. C. Feldman, Thin Solid Films 105, 187 (1983).

    Google Scholar 

  75. See references, in Silicon-Moleeular Beam Epitaxy (E. Kasper and J. C. Bean, eds.), C.R.C. Press, Boca Raton, Florida (1988).

    Google Scholar 

  76. M. Zinke-Allmang, L. C. Feldman, and S. Nakahara, Appl. Phys. Lett. 51, 975 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Feldman, L.C. (1991). Rutherford Backscattering and Nuclear Reaction Analysis. In: Czanderna, A.W., Hercules, D.M. (eds) Ion Spectroscopies for Surface Analysis. Methods of Surface Characterization, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3708-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3708-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6649-2

  • Online ISBN: 978-1-4615-3708-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics