Skip to main content

Dissociation Processes in Plasma Chemistry and Gaseous Dielectrics

  • Chapter
Book cover Gaseous Dielectrics VI
  • 464 Accesses

Abstract

Plasma processing is widely used in integrated circuit manufacturing. In a typical plasma process a chemically nonreactive feed gas flows into a discharge reactor where the discharge electrons dissociate the feed gas and produce chemically reactive products. The discharge dissociation products react at the surface of the Si, GaAs or other wafer being processed and either remove material in an etching process or deposit a thin film. Some of the gases which are used in these etching and deposition processes are listed in Table 1. Our present understanding of these plasma processes is limited, in part, by the limited availability of fundamental information about the microscopic physical and chemical processes which lead to the observed macroscopic etching and deposition processes. The important processes include electron impact ionization and dissociation, gas phase chemical reactions, surface chemical reactions and physical processes at the surfaces. Electron impact dissociation can also change the chemical composition of gaseous dielectrics. Therefore, dissociation cross section data is needed to understand and model both plasma processing reactors and the behavior of gaseous dielectrics. Dissociative ionization and dissociative excitation cross sections are available for many gases. However, for gases where the dissociation channels are known, a significant fraction of the total dissociation is due to processes which produce neutral fragments in their electronic ground state. Cross sections for these neutral dissociation processes are difficult to measure because the products are difficult to detect. Computer modeling of plasma processing discharges and the available cross section and chemical kinetic data have recently been reviewed.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. E. Kline and M. J. Kushner, 1989, “Computer Simulation of Materials Processing Plasma Discharges,” CRC Critical Reviews of Solid State and Materials Sciences, 16:1.

    Article  Google Scholar 

  2. L. G. Christophorou, Ed., 1984, Electron-Molecule Interactions and Their Applications, Vols. 1 and 2, New York, Academic.

    Google Scholar 

  3. K. H. Becker, “Electron Molecule Collision Cross Sections for Etching Gases,” to be published in Non Equilibrium Processes in Partially Ionized Gases, NATO ASI Series, M. Capitelli and J. N. Bardsley, Eds.

    Google Scholar 

  4. C. E. Melton and P. S. Rudolph, 1967, J. Chem. Phys., 47:1771.

    Article  Google Scholar 

  5. P. C. Cosby and H. Helm, 1989, Bull. Am. Phys. Soc., 34:325.

    Google Scholar 

  6. H. F. Winters and M. Inokuti, 1982, Phys. Rev. A, 25:1420.

    Article  Google Scholar 

  7. A. V. Phelps, 1968, Rev. Mod. Phys., 40:399.

    Article  Google Scholar 

  8. R. W. Crompton, 1983, Proc. 16th International Conf. on Phenomena in Ionized Gases, Duesseldorf, Invited Papers, p. 58.

    Google Scholar 

  9. M. Hayashi, 1985, “Electron Collision Cross Sections for Molecules Determined From Beam and Swarm Data”, in Swarm Studies and Inelastic Electron Molecule Collisions, L. C. Pitchford, B. V. McKoy, A. Chutjian, and S. Trajmar, Springer-Verlag, New York, pp. 167–187.

    Google Scholar 

  10. M. Hayashi, 1985, “Electron collision cross sections for C2F6 and N2O,” in Gaseous Dielectrics V, L. Christophorou and D. Bouldin, Eds., Pergamon, New York.

    Google Scholar 

  11. K. Stephan, H. Deustch, and T. D. Mark, 1985, J. Chem. Phys., 83:5712.

    Article  Google Scholar 

  12. K. Masek, L. Laska, R d’Agostino and F. Cramarossa, 1987, Contrib. Plasma Phys., 27:15.

    Google Scholar 

  13. M. G. Curtis, I. C. Walker and K. J. Mathieson, 1988, J. Phys. D, 21:1271.

    Article  Google Scholar 

  14. S. M. Spyrou, I. Sauers, and L. G. Christophorou, 1983, J. Chem. Phys., 78:7200.

    Article  Google Scholar 

  15. J. P. Novak and M. F. Frechette, 1985, J. Appl. Phys., 57:4368.

    Article  Google Scholar 

  16. S. Okabe and T. Kuono, 1986, Japanese J. Appt. Phys., 24:1335.

    Article  Google Scholar 

  17. K. Leiter and T. D. Mark, 1985, “Electron Ionization Cross Sections for CF2C12,” in Proc. 7th Int. Symp. Plasma Chem., Eindhoven.

    Google Scholar 

  18. K. Leiter, K. Stephan, E. Mark, and T. D. Mark, 1984, Plasma Chem.and Plasma Proc., 4:235.

    Article  Google Scholar 

  19. M. Hayashi and T. Nimura, 1983, J. Appl. Phys., 54:4879.

    Article  Google Scholar 

  20. H. Deutsch, P. Scheier, and T. D. Mark, 1986, Int. J. Mass Spect., 74:81.

    Article  Google Scholar 

  21. F. A. Stevie and M. J. Vasile, 1981, J. Chem. Phys., 74: 5106.

    Article  Google Scholar 

  22. D. K. Davies, 1982, “Measurements of swarm parameters in chlorine-bearing molecules,” Report No. AFWAL-TR-82–2083, Air Force Wright Aeronautical Lab., Wright-Patterson Air Force Base, Ohio.

    Google Scholar 

  23. G. L. Rogoff, J. M. Kramer, and R. B. Piejak, 1986, IEEE Trans. Plasma Sci., PS-14:103.

    Article  Google Scholar 

  24. A. V. Phelps and R. J. VanBrunt, 1988, J. Appl. Phys., 64:4269.

    Article  Google Scholar 

  25. M. Hayashi and T. Nimura, 1984, J. Phys. D, 17:2215.

    Article  Google Scholar 

  26. Y. Ohmori, M. Shimozuma and H. Tagashira, 1986, J. Phys. D, 19:1029.

    Article  Google Scholar 

  27. J. Perin, J. P. M. Schmitt, G. De Rosny, B. Drevillon, J. Huc, and A. Lloreyt, 1982, Chem. Phys., 73:383.

    Article  Google Scholar 

  28. A. Garscadden, G. L. Duke and W. F. Bailey, Appl. Phys. Lett., 43:1012.

    Google Scholar 

  29. H. Chatham, D. Hits, R. Robertson and A. Gallagher, J. Chem. Phys., 81:1770.

    Google Scholar 

  30. Y. Ohmori, K. Kitamori, M. Shimozuma and H. Tagashira, 1986, J. Phys. D, 19:437.

    Article  Google Scholar 

  31. D. K. Davies, L. E. Kline and W. E. Bies, 1989, J. Appl. Phys., 65:3311.

    Article  Google Scholar 

  32. K. Tachibana, 1986, Phys. Rev. A, 34:1007.

    Article  Google Scholar 

  33. Y. Nakamura and M. Kurachi, 1988, J. Phys. D, 21:718.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kline, L.E. (1991). Dissociation Processes in Plasma Chemistry and Gaseous Dielectrics. In: Christophorou, L.G., Sauers, I. (eds) Gaseous Dielectrics VI. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3706-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3706-9_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6648-5

  • Online ISBN: 978-1-4615-3706-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics