Skip to main content

Prostatic Growrh Factors (PrGFs)——From the Identification of Probasin to the Role of PrGFs

  • Chapter
Molecular and Cellular Biology of Prostate Cancer

Abstract

Rat prostates contain a unique androgen-regulated protein of 19-21 kilodaltons, “probasin” (prostatic basic protein), that is statistically related to members of alpha-2-microglubulin ligand carrier family. Probasin has low but distinct growth factor activity as determined by DNA synthesis stimulation with BALB/c 3T3 fibroblasts. With this as turning point, we have studied identification and significance of prostatic growth factors. Rat dorsolateral prostate contains heparin-binding growth factors(HBGFs or FGFs) and prostatic EGF-related mitogen (PEM); PEM is a member of the non-HBGF family that is the major growth factor in normal prostate but hardly detectable in prostate tumor tissues. In human pathologic prostates, HBGFs are major growth factors both in benign prostatic hypertrophy (BPH) tissues and in prostate cancer. The HBGF content in BPH tissues is higher than in prostate cancer, whereas osteoblast growth factor (OGF) as assayed by DNA synthesis stimulation using MC3T3-E1 osteoblasts is higher in prostate cancer. A metastatic cell line, AT-3, established from the Dunning rat prostatic carcinoma produces OGF, insulin-like growth factor II (IGF-II) and transforming growth factor beta (TGF-,B). PEM and OGF, both of which have low affinity for heparin, are different from each other in stability to heat and acid treatments. Partially purified OGF contains IGF-II and TGF-ß in addtion to an acid labile polypeptide growth factor with a molecular weight of about 19 kilodaltons. Cell lines with high potency for metastasis (AT-3, MAT-LyLu and MAT-Lu), established from the Dunning rat prostatic carcinoma, can produce higher amount of IGF-II. TGF-ß at a concentration as low as 0.05 ngjml either stimulatesd attachment or detachment of AT-3 cells, depending on the kind of culture media. Detached AT-3 cells are able to grow in suspension. TGF-ß stimulates cell growth of MC3T3-E1 osteoblasts.

In my hypothesis, i) angiogenesis of HBGFs and growth inhibition ofTGF-ß on epithelial cells might have the most critical influence on the latency of prostate cancer, ii) cell detachment stimulating activity of TGF-ß has a possible role in the initial stage of metastasis, and iii) OGF, in addition to TGF-ß and IGF-II, might promote the continuous formation of osteoblastic bony metastases.

Abbreviations used: HBGF-1, heparin-binding growth factor 1 (acidic FGF); FGF, fibroblast growth factor; HBGF-2, heparin-binding growth factor-2 (basic FGF); IGF-I, insulin-like growth factor I; IGF-II, insulinlike growth factor II; TGF-ß, transforming growth factor typeß ; PrGF, prostatic growth factor; DLP, dorsolateral prostate; BPH, benign prostatic hypertrophy; PEM, prostatic EGF-related mitogen; OGF, osteoblast growth factor; CHAPS, 3-[(cholamido-propyl)dimethylammonio]-1-propane sulfonate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Matuo Y., Nishi N., Negi T., Tanaka Y., Wada F.: Isolation and characterization of androgen-dependent non-histone chromosomal protein from dorsolateral prostate of rats. Biochem. Biophys. Res Commun. 109: 334–340, 1982.

    Article  PubMed  CAS  Google Scholar 

  2. Matuo Y., Nishi N., Tanaka Y., Muguruma Y., Tanaka K., Akatsuka Y., Matsui S., Sandberg A.A., Wada F. Changes of an androgen-dependent nuclear protein during functional differentiation of the dorsolateal prostate of rats. Biochem Biophys Res Commun 118: 467–473, 1984.

    Article  PubMed  CAS  Google Scholar 

  3. Matuo Y., Nishi N., Muguruma Y., Yoshitake Y., Kurata N., Wada F.: Localization of prostatic basic protein (“PROBASIN”) in the rat prostates by use of monoclonal antibody. Biochem. Biophys. Res. Commun. 130: 293–300, 1985.

    Article  PubMed  CAS  Google Scholar 

  4. Matuo Y., Nishi N., Tanaka Y., Muguruma Y., Tanaka K., Wada F.: Lobe-specific distribution of a 20,000-dalton nonhistone protein in the dorsolateral prostate of rats. The Prostate 8: 195–206, 1986.

    Article  PubMed  CAS  Google Scholar 

  5. Matuo Y., Nishi N., Wada F.: Growth factors in the prostate. Arch. Androl. 19:193–210, 1987.

    Article  PubMed  CAS  Google Scholar 

  6. Matuo Y., Adams P.S., Nishi N., Yasumitsu H., Crabb J.W., Matusik R.J., McKeehan W.L.: The androgen-dependent rat prostate, probasin, is a heparin-binding protein that co-purifies with heparin-binding growth factor-1. In Vitro Cell Dev. Biol. 25: 581–584, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Dodd J.G., Sheppard P.C., Matusik R.J.: Characterization and cloning of rat dorsal prostate mRNAs. J. Biol. Chem.: 258, 10731–10737, 1983.

    PubMed  CAS  Google Scholar 

  8. Spence A.M., Sheppard P.C., Davie J.R., Matuo Y., Nishi N., McKeehan W.L., Dodd J.D., Matusik R.J.: Regulation of a bifunctional mRNA results in synthesis of secreted and nuclear probasin. Proc Natl. Acad. Sci. (in press).

    Google Scholar 

  9. Jacob S.C., Pikna D., Lawson R.K: Prostatic osteoblastic factor. Invest Urol. 17: 195–198, 1979.

    Google Scholar 

  10. Jacobs S.C., Russell K.L.: Mitogenic factor in human prostate extracts. Urology 16: 488–491, 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Story M.T., Jacobs S.C., Lawson R.K. Partial purification of a prostatic growth factor. J. Urol. 132: 1212–1215, 1984.

    PubMed  CAS  Google Scholar 

  12. Story M.T., Esch F., Shimasaki S., Sasse J., Jacobs S.C., Russell K.L. Amino-terminal sequence of a large form of basic fibroblast growth factor isolated from human benign prostatic hyperplastic tissue. Biochem. Biophys. Res. Commun. 142: 702–709, 1987.

    Article  PubMed  CAS  Google Scholar 

  13. Story M.T., Sasse J., Jacobs S.C., Lawson R.K Prostatic growth factor: purification and structural relationship to basic fibroblast growth factor. Biochemistry 26: 3843–3849, 1987.

    Article  PubMed  CAS  Google Scholar 

  14. Nishi N., Matuo Y., Muguruma Y., Yoshitake Y., Nishikawa K., Wada F. A human prostatic growth factor (hPGF): Partial purification and characterization. Biochem. Biophys. Res. Commun. 132: 1103–1109, 1985.

    Article  PubMed  CAS  Google Scholar 

  15. Matuo Y., Nishi N., Wada F. Prostatic growth factors. In: “Prostate Cancer. The Second Tokyo Symposium”, Karr J.P. and Yamanaka H. ed. Elsevier Science Publishing Co., Inc, NY. pp., 45–60, 1989.

    Google Scholar 

  16. Matuo Y., Nishi N., Matsi S., Sandberg A.A., Isaacs J.T., Wada F. Heparin binding affinity of rat prostatic growth factor in normal and cancerous prostates: Partial purification and characterization of rat prostatic growth factor in the Dunning tumor. Cancer Res. 47: 188–192, 1987.

    PubMed  CAS  Google Scholar 

  17. Nishi N., Matuo Y., Kunitomi K., Takenaka I., Usami M., Kotake T., Wada F. Comparative analysis of growth factors in normal and pathologic human prostates. The Prostate 13: 39–48, 1988.

    Article  PubMed  CAS  Google Scholar 

  18. Matuo Y., Nishi N., Tanaka H., Sasaki I., Isaacs J.T., Wada F. Production of IGF-II-related peptide by an anaplastic cell line (AT-3) established from the dunning prostatic carcinoma of rats. In Vitro Cell. Dev. Biol. 24:1053–1056, 1988.

    Article  PubMed  CAS  Google Scholar 

  19. Nishi N., Matuo Y., Nakamoto T., Wada F. Proliferation of epithelial cells derived from rat dorsolateral prostate in serum-free primary cell culture and their response to androgen. In Vitro Cell Dev. Biol. 24: 778–786, 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Nishi N., Matuo Y., Wada F. Partial purification of a major type of rat prostatic growth factor: Characterization as an epidermal growth factor-related miogen. The Prostate 13: 209–220, 1988.

    Article  PubMed  CAS  Google Scholar 

  21. Matuo Y., Nishi N., Takasuka H., Masuda H., Nishikawa J.T., Isaacs J.T., Adams P.S., McKeehan W.L., and Sato C.H. Production and significance of transforming growth factor beta in AT-3 metastaticcell line established from the Dunning rat prostatic adenocarcinoma (under preparation).

    Google Scholar 

  22. Mydlo J.H., Bulbul M.A., Heston W.D.W., Fair W.R Heparin-binding growth factor isolated from human prostatic extracts. The Prostate 12: 343–355, 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Mannson P-E, Adams P.S., Kan M., Mckeehan W.L. Heparin-binding growth factor gene expression and receptor characteristics in normal rat prostate and two transplantable rat prostate tumors. Cancer Res. 49: 2485–2494, 1989.

    Google Scholar 

  24. Gospodarowicz D., Ferrara N., Schweigerer L., Neufeld G. Structural characterization and biological functions of fibroblast growth factor. Endocrine Review 8: 95–114, 1987.

    Article  CAS  Google Scholar 

  25. Terranova V.P., DiFlorio R., Lyall R.M., Hic S., Friesel R., Maciag T. Human endothelial cells are chemotactic to endothelial cell growth factor and heparin. J. Cell. Biol. 101: 2330, 1985.

    Article  PubMed  CAS  Google Scholar 

  26. McKeehan W.L., Adams P.S., Posser M.P. Direct mitogenic effect of insulin, epidermal epidermal growth factor, glucocorticoid, cholera toxin, unknown pituitary factors and possibly prolactin, but not androgen, on normal rat prostate epithelial cells in serum-free, primary cell culture. Cancer Res. 44: 1998–2010, 1984.

    PubMed  CAS  Google Scholar 

  27. Crabb J.W., Armes L.G., Carr S.A., Johnson C.M., Roberts G.D.: Bordoli R.S., McKeehan W.L. Complete primary structure of prostatropin, a prostatic epithelial cell growth factor. Biochemistry 25: 4988–4993, 1986.

    Article  PubMed  CAS  Google Scholar 

  28. Gospodarowics D., Neufeld G., Schweigerer L. Molecular and biological characterization of fibroblast growth factor: An angiogenic factor which also controls the proliferation and differentiation of mesoderm and neuroectoderm derived cells. Cell Differ 19: 1–1986.

    Article  Google Scholar 

  29. Isaacs J.T., Isaacs W.B., Feitz W.F.J., Scheres J. Establishment and characterization of seven Dunning rat prostatic cancer cell lines and their use in developing methods for predicting metastatic abilities of prostate cancers. The Prostate 9: 261–281, 1986.

    Article  PubMed  CAS  Google Scholar 

  30. Adams S.D., Nisseley S.P., Handwerger S., Rocheler M.M. Developmental patterns of insulin-like growth factor-I and-II synthesis and requlation in rat fibroblasts. Nature 302: 150–153, 1983.

    Article  PubMed  CAS  Google Scholar 

  31. Rotwein P., Pollock K.M., Watson M., Milbrand J.D. Insulin-like growth factor gene expression during rat embryonic development. Endocrinol. 121: 2141–2144, 1987.

    Article  CAS  Google Scholar 

  32. Kato Y., Watanabe R., Hirai Y., Suzuki F., Canalis E., Raisz L.G. Selective stimulation of sulfated glycosaminoglycan synthesis by multiplication-stimulating activity, cartilage-derived factor and bone-derived growth factor: Comparison of their actions on cultured chondrocytes with those of fibroblast growth factor and Rhodamine fibrosarcoma-derived growth factor. Biochem. Biophys. Acta. 716: 232–239, 1982.

    Article  PubMed  CAS  Google Scholar 

  33. Stamatogluo S., Keller J.M. Correlation between cell substrate attachment in vitro and cell surface heparan sulfate affinity for fibronectin and collagen. J. Cell. Biol. 96: 1820–1823, 1983. Forester J.V., Wilkinson P.C. Inhibition of leukocyte locomotion by hyaluronic acid. J. Cell. Sci. 48: 315-331, 1981.

    Article  Google Scholar 

  34. Majack R.A., Clowes, A.W. Inhibition of vascular smooth muscle cell migration by heparin-like glycosaminoglycans. J. Cell. Physiol. 118: 253–256, 1984.

    Article  PubMed  CAS  Google Scholar 

  35. Toole B.P.: Glycosaminoglycans in morphogenesis. In: “Cell Biology of Extracellular Matrix” Hey ED ed. Plenum, New York, 1981, pp 259–294.

    Chapter  Google Scholar 

  36. Kufaawa M.J., Tepperman K. Culturing chick muscle cells on glycosaminoglycan substrates: Attachment and differentiation. Dev. Biol. 99: 277–286, 1983.

    Google Scholar 

  37. Castellot U. Jr, Addonizio M.L., Rosenberg R., Karnovsky M.J. Cultured endothelial cells produce a heparin like inhibitor of smooth muscle cell growth. J. Cell. Biol. 90: 372–379, 1981.

    Article  PubMed  CAS  Google Scholar 

  38. Castellot, J.J. Jr, Favrean L.V., Karnovsky M.J., Rosenberg R.D. Inhibition of vascular smooth muscle cell growth by endo-thelial cell-derived heparin. Possibile role of a platelet endoglycosidase. J. Biol. Chem. 257: 11256–11260, 1982.

    PubMed  CAS  Google Scholar 

  39. Clowes A.W., Karnovsky M.J. Suppression by heparin of smooth muscle cell proliferation in injured arteries. Nature 265: 625–626, 1977.

    Article  PubMed  CAS  Google Scholar 

  40. Kawakami H., Terayama H. Liver plasma membranes and proteoglycans prepared therefrom inhibit the growth of hepatoma cells in vitro. Biochem. Biophys. Acta. 646: 161–168, 1981.

    Article  PubMed  CAS  Google Scholar 

  41. Matuoka K., Mitsui Y. Involvement of cell surface heparan sulfate in the density-dependent inhibition of cell proliferation. Cell. Struct. Funct. 6: 23–33, 1981.

    Article  CAS  Google Scholar 

  42. Ohnishi T., Ohshima E., Ohtsuka M. Effect of liver cell coat acid mucopolysaccharides on the appearance of density-dependent inhibition in hepatoma cell growth. Exp. Cell. Res. 93: 136–142, 1975.

    Article  PubMed  CAS  Google Scholar 

  43. Orlidge A, D’Amore P.A. Cell specific effects of glycosaminoglycans on the attachment and proliferation of vascular wall components. Microvasc. Res. 31: 41–53, 1986.

    Article  PubMed  CAS  Google Scholar 

  44. Massague J., Kelly B., Mottola C. Stimulation by insulin-like growth factors is required for cellular transformation by type beta transforming growth factor. J. Biol. Chem. 260: 4551–4554, 1985.

    PubMed  CAS  Google Scholar 

  45. Ikeda T., Lioubin M.N., Marquardt H. Human transforming growth factor type beta 2: Production by a prostatic adenocarcinoma cell line, purification, and initial characterization. Biochemistry 26: 2406–2410, 1987.

    Article  PubMed  CAS  Google Scholar 

  46. Robey P.G., Young M.P., Flanders K.C., Roche N.S., Kondaiah P., Reddi A.H., Termine J.D., Sporn M.B., Roberts A.B. Osteoblasts synthesize and respond to transforming growth factor-type beta (TGF-β) in vitro. J. Cell. Biol. 105: 457–463, 1987.

    Article  PubMed  CAS  Google Scholar 

  47. Centrlla M., McCarthy T.L., Canalis E. Transforming growth factor beta is a bifunctional requlator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone. J. Biol. Chem. 262: 2869–2874, 1987.

    Google Scholar 

  48. McKeehan W.L., P.S. Heparin-binding growth factor /prostatropin attenuates inhibition of rat prostate tumor epithelial cell growth by transforming growth factor type. In Vitro Cell Dev. Biol. 24: 243–246, 1988.

    Article  PubMed  CAS  Google Scholar 

  49. Kyprianou N., Isaacs J.T. Identification of a cellular receptor for transforming growth factor-ß inrat ventral prostate and its negative regulation by androgens. Endocrinology 123: 2124–2131, 1988.

    Article  PubMed  CAS  Google Scholar 

  50. Kyprianou N., Isaacs J.T. Expression of transforming growth factor-ß in the rat ventral prostate during castration-induced programmed cell death. Mole Endocrinology (in press).

    Google Scholar 

  51. Sporn M.B., Roberts A.B., Wakefield L.M., De Crombrugghe B. Some recent advances in the chemistry and biology of transforming growth factor-beta. J. Cell. Biol.: 1039–1045, 1987.

    Google Scholar 

  52. Matuo Y., Nishi N., Muguruma Y., Yoshitake Y., Masuda Y., Nishikawa K., Wada F. The usefulness of CHAPS as a non-cytoxic stabilizing agent in purification of growth factors. Cytotech. 1: 309–318, 1988.

    Article  CAS  Google Scholar 

  53. Hierowski M.T., McDonald M.W., Dunn L., Sullivan J.W. The partial dependency of human prostatic growth factor on steroid hormones in stimulating thymidine incorporation into DNA J.Urol. 138: 909–912, 1987.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matuo, Y. (1991). Prostatic Growrh Factors (PrGFs)——From the Identification of Probasin to the Role of PrGFs. In: Karr, J.P., Coffey, D.S., Smith, R.G., Tindall, D.J. (eds) Molecular and Cellular Biology of Prostate Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3704-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3704-5_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6647-8

  • Online ISBN: 978-1-4615-3704-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics