Skip to main content

Electrostatic Properties of Molecules from Diffraction Data

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 250))

Abstract

Single crystal x-ray diffraction analysis today has become an essential methodology for scientists in a wide range of disciplines that span solid-state physics, synthetic chemistry and molecular biology. Although x-ray diffraction was first exploited by the Braggs in 1913 for crystal structure determination,1 it has only been the last three decades that the method has become routine for establishing the atomic structure in a crystallographic unit cell. The advent of digital computers has made it possible to implement direct methods, the evaluation of relations between measured diffraction intensities and phases, for the assignment of phases to observed x-ray structure factor moduli. Accurate measurements of the diffracted intensities are now made with diffractometers that operate in an automatic mode with supporting software to select out the photon counts which are mostly due to elastic scattering. For many crystals of organic compounds, which have rather low Debye temperatures, it is routine in many labs to cool the sample to about 100 K with a cold stream of nitrogen and thereby measure Bragg diffraction intensities at these reduced temperatures to larger scattering angles than is possible at room (300 K) temperature. Thus full atomic resolution is often achieved. When the phase estimates of the structure factors are adequate for locating the atoms within ten or so picometers of their mean thermal positions, least squares programs are then used to adjust both atomic positions and mean square amplitudes of vibration by fitting a structure factor model to the “observed” structure factor moduli or their squares. In this latter stage of a crystal structure anlaysis, the observation to parameter ratio is greater than ten to one and, for the case of high resolution data, the ratio may exceed fifty to one. The very large redundancy - the larger number of observations to number of atomic parameters - in x-ray crystallography is what makes the experiment a definitive method for structure determination. Upon completion of a crystal structure determination, it is routine to report atomic positions with estimated standard deviations in the range of tenths of picometers. In some cases a dynamical analysis of the structure, such as a rigid body motion model, is included in an attempt to deduce the equilibrium structure of the atoms in the crystal. The final objective, a complete determination of the atomic arrangement with precise metrics in a crystal unit cell, has been met.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. H. Bragg and W. L. Bragg, Proc. Roy. Soc. London, 88, 428 (1913); 89, 246 (1913).

    Article  ADS  Google Scholar 

  2. C. K. Johnson and H. A. Levy, International Tables for X-Ray Crystallography, Vol. IV, pp. 311–336 (1974).

    Google Scholar 

  3. I. Waller, Phil. Mag., 4, 1228 (1927).

    Google Scholar 

  4. P. M. Platzman and N. Tzoar, Phys. Rev., B2, 3556 (1970).

    ADS  Google Scholar 

  5. V. Florescu and M. Gavrila, Phys. Rev., A14, 211 (1976).

    ADS  Google Scholar 

  6. L. Kissel and R. H. Pratt, Phys. Rev. Lett., 40, 387 (1978).

    Article  ADS  Google Scholar 

  7. R. H. Pratt, Indian J. Phys., 58A (Suppl.), 1–11 (1984).

    MathSciNet  Google Scholar 

  8. M. Born, Rep. Prog. Phys., 9, 294 (1942-1943).

    Article  ADS  Google Scholar 

  9. B. T. M. Willis and A. W. Pryor, Thermal Vibrations in Crystallography, Cambridge University Press, Chapter 9 (1975).

    Google Scholar 

  10. R. F. Stewart and D. Feil, Acta Cryst., A36, 503 (1980).

    Google Scholar 

  11. R. F. Stewart, Chem. Phys. Lett., 65, 335 (1979).

    Article  ADS  Google Scholar 

  12. R.F. Stewart, in Critical Evaluation of Chemical and Physical Structural Information, eds. D. R. Lide, Jr. and M. A. Paul, National Academy of Sciences, Washington DC, p.540 (1974).

    Google Scholar 

  13. M.A. Spackman and R. F. Stewart, in Methods and Applications in Crystallographic Computing, eds. S. R. Hall and T. Ashida, Oxford University Press, Oxford, UK (1984).

    Google Scholar 

  14. R. F. Stewart, God. Jugosl. Cent. Kristalogr., 17, 1 (1982).

    Google Scholar 

  15. R.F. Stewart, in Electron and Magnetization Densities in Molecules and Crystals, ed. P. Becker, Plenum Press, NY, NASIS Series B: Physics, Vol. 48, 427 (1980).

    Google Scholar 

  16. R. J. van der Wal and R. F. Stewart, Acta Cryst., A40, 587 (1984).

    Google Scholar 

  17. S. Swaminathan, B. M. Craven, M. A. Spackman and R. F. Stewart, Acta Cryst., B40, 398 (1984).

    Google Scholar 

  18. S. Swaminathan, B. M. Craven and R. K. McMullan, Acta Cryst., B40, 300 (1984).

    Google Scholar 

  19. R. F. W. Bader, T. T. Nguyen Dang and Y. Tal, Rep. Prog. Phys., 44, 893 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  20. R. F. W. Bader and H. Essen, J. Chem. Phys., 80, 1943 (1984).

    Article  ADS  Google Scholar 

  21. J. Epstein, J. R. Ruble and B. M. Craven, Acta Cryst., B38, 140 (1982).

    Google Scholar 

  22. R. K. McMullan, J. Epstein, J. R. Ruble and B. M. Craven, Acta Cryst., B35, 688 (1979).

    Google Scholar 

  23. R. K. McMullan, P. Benci and B. M. Craven, Acta Cryst., B36, 1424 (1980).

    Google Scholar 

  24. B. M. Craven and P. Benzi, Acta Cryst., B37, 1584 (1981).

    Google Scholar 

  25. P. J. Becker and P. Coppens, Acta Cryst., A30, 129 (1974).

    Google Scholar 

  26. J. R. Ruble, private communication (1989) (x-ray data for C6D6).

    Google Scholar 

  27. G. A. Jeffrey, J. R. Ruble, R. K. McMullan and J. A. Pople, Proc. Roy. Soc, A414, 47 (1987).

    ADS  Google Scholar 

  28. R. F. Stewart, Acta Cryst., A33, 33 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Stewart, R.F. (1991). Electrostatic Properties of Molecules from Diffraction Data. In: Jeffrey, G.A., Piniella, J.F. (eds) The Application of Charge Density Research to Chemistry and Drug Design. NATO ASI Series, vol 250. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3700-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3700-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-43880-6

  • Online ISBN: 978-1-4615-3700-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics