Skip to main content

First-Principles Theoretical Methods for the Calculation of Electronic Charge Densities and Electrostatic Potentials

  • Chapter
The Application of Charge Density Research to Chemistry and Drug Design

Part of the book series: NATO ASI Series ((NSSB,volume 250))

Abstract

Recent years have seen dramatic and exciting advances in computational chemistry, due to important developments in both hardware and software technology. One of these has certainly been the increasing availability of supercomputers for research purposes, as for example at the centers supported by the National Science Foundation and at government laboratories such as the Naval Research Laboratory or the Air Force Supercomputing Center. A complementary factor has been the expanded use of personal computers, workstations and graphics terminals that allow the researcher to interact with supercomputers and mainframes, and to visually monitor and examine the results. At the same time, there has been a mushrooming of software packages at all levels, ranging from ab initio to empirical, which permit continually improving computational treatments of systems ranging from individual molecules to molecular aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Becker, ed., Electron and Magnetization Densities in Molecules and Crystals, Plenum Press, New York, 1980.

    Google Scholar 

  2. P. Politzer and D. G. Truhlar, eds., Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press, New York, 1981.

    Google Scholar 

  3. W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, John Wiley and Sons, New York, 1986.

    Google Scholar 

  4. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.

    Google Scholar 

  5. M. Born and J. R. Oppenheimer, Ann. Physik 84:457 (1927).

    Article  ADS  Google Scholar 

  6. H. A. Bethe and E. E. Salpeter, Quantum Mechnics of Oneand Two-electron Atoms, Academic Press, New York, 1957.

    Google Scholar 

  7. P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. B136:864 (1964).

    MathSciNet  Google Scholar 

  8. W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A140:113 (1965).

    MathSciNet  Google Scholar 

  9. S. Borman, Density-Functional Theory Gains Following Among Chemists, Chem. Eng. News, 22, April 9, 1990.

    Google Scholar 

  10. J. M. Seminario, M. Grodzicki and P. Politzer, Applications of Local Density Functional Theory to The Study of Chemical Reactions, in Density Functional Theory Approaches to Chemistry, J. K. Labanowski and J. W. Andzelm, eds, Springer, 1990 (in press).

    Google Scholar 

  11. C. Møller and M. S. Plesset, Phys. Rev. 46:418 (1934).

    Article  Google Scholar 

  12. R. Moszynski, S. Rybak, S. Cybulski and G. Chalasinski, Correlation Correction to the Hartree-Fock Electrostatic Energy Including Orbital Relaxation, Chem. Phys. Lett. 166:609 (1990).

    Article  ADS  Google Scholar 

  13. J. A. Pople and R. Seeger, Electronic Density in Müller-Plesset Theory, J. Chem. Phys. 62:4566 (1975).

    Article  ADS  Google Scholar 

  14. B. J. Rosenberg and I. Shavitt, Ab Initio SCF and CI Studies on the Ground State of the Water Molecule. I. Comparison of CGTO and STO Basis Sets Near the Hartree-Fock Limit, J. Chem. Phys. 63:2162 (1975).

    Article  ADS  Google Scholar 

  15. C. Gatti, P. J. MacDougall and R. F. W. Bader, Effect of Electron Correlation on the Topological Properties of Molecular Charge Distributions, J. Chem. Phys. 88:3792 (1988).

    Article  ADS  Google Scholar 

  16. R. J. Boyd and L.-C. Wang, The Effect of Electron Correlation on the Topological and Atomic Properties of the Electron Density Distributions of Molecules, J. Comp. Chem. 10:367 (1989).

    Article  Google Scholar 

  17. V. H. Smith, Jr., Theoretical Determination and Analysis of Electronic Charge Distributions, Phys. Scr. 15:147 (1977).

    Article  ADS  Google Scholar 

  18. G. Lauer, H. Meyer, K.-W. Schulte, A. Schweig, and H.-L. Hase, Correlated Electron Density of N2, Chem. Phys. Lett. 67:503 (1979).

    Article  ADS  Google Scholar 

  19. L.-C. Wang and R. J. Boyd, The Effect of Electron Correlation on the Electron Density Distributions in Molecules: Comparison of Perturbation and Configuration Interaction Methods, J. Chem. Phys. 90:1083 (1989).

    Article  ADS  Google Scholar 

  20. P. Politzer and K. C. Daiker, Models for Chemical Reactivity, in The Force Concept in Chemistry, B. M. Deb, ed., Van Nostrand Reinhold, New York, 1981.

    Google Scholar 

  21. C. Ghio and J. Tomasi, The Protonation of Three-Membered Ring Molecules: The ab initio SCF versus the Electrostatic Picture of the Proton Approach, Theoret. Chim. Acta 30:151 (1973).

    Article  Google Scholar 

  22. J. S. Murray and P. Politzer, The Effects of Water Upon the Hydrogen Bonding in a Formamide-Ammonia Complex, Chem. Phys. Letters 136:283 (1987).

    Article  ADS  Google Scholar 

  23. J. S. Murray and P. Politzer, Electrostatic Potentials of Amine Nitrogens as a Measure of the Total Electron-Attracting Tendencies of Substituents, Chem. Phys. Letters 152:364 (1988).

    Article  ADS  Google Scholar 

  24. R. Daudel, H. LeRonzo, R. Cimiraglia and J. Tomasi, Dependence of the Electrostatic Molecular Potential upon the Basis Set and the Method of Calculation of the Wave Function. Case of the Ground 3A1 (π-π*) and 1A1 (π→π*) States of Formaldehyde, Int. J. Quantum Chem. 13:537 (1978).

    Article  Google Scholar 

  25. J. Chandrasekhar, J. G. Andrade and P.v.R. Schleyer, Efficient and Accurate Calculations of Anion Proton Affinities, J Am. Chem. Soc. 103:5609 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Seminario, J.M., Murray, J.S., Politzer, P. (1991). First-Principles Theoretical Methods for the Calculation of Electronic Charge Densities and Electrostatic Potentials. In: Jeffrey, G.A., Piniella, J.F. (eds) The Application of Charge Density Research to Chemistry and Drug Design. NATO ASI Series, vol 250. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3700-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3700-7_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-43880-6

  • Online ISBN: 978-1-4615-3700-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics