Skip to main content

Interactions Between The Functional Domains of Antithrombin III

  • Chapter
Recombinant Technology in Hemostasis and Thrombosis

Abstract

Antithrombin III is the major physiologic inhibitor of the activated serine proteases of the blood coagulation cascade1. Inactivation of the proteases occurs following cleavage of the Arg393-Ser394 peptide bond and formation of a stable complex between this reactive site arginine of antithrombin III and the active site serine of the protease2. Antithrombin III is a member of a superfamily of protease inhibitors3 designated as serine protease inhibitors or “serpins”4. Although all of the members of the serpin family exhibit a high degree of amino acid sequence homology, particularly in the C-terminal portions of the molecules which contain the reactive site residues, the specificities of these inhibitors vary widely5–8. Furthermore, with antithrombin III the relative rates of complex formation with different proteases, for example, thrombin, Factor Xa, Factor IXa, Factor VIIa, are significantly different despite the fact that each of these enzymes displays selectivity for cleavage at arginine side chains. At present, it is not clear what structural features, in addition to the amino acid sequence at the p1 and p1’ positions, determine the kinetics of protease-inhibitor docking and the stability of the resulting complex. However, a variety of approaches, including site-directed mutagenesis, antibody mapping and protein crystallography, are being used to explore these questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenberg, RD: “Regulation of the Hemostatic Mechanism.” in: The Molecular Basis of Blood Diseases. G Stamatoyannopoulos, AW Nienhuis, P Leder and PW Majerus eds. W.B.Saunders Company. Philadelphia, 534–574, 1987.

    Google Scholar 

  2. Jornvall, H, Fish, WW and Bjork, I. “The Cleavage Site in Bovine Antithrombin.” FEBS Letters. 106: 358–362, 1979.

    Article  PubMed  CAS  Google Scholar 

  3. Hunt, LT and Dayhoff, MO. “A Surprising New Superfamily Containing Ovalbumin, Antithrombin III and Alpha-1-Proteinase Inhibitor.” Biochem. Biophys. Res. Commun. 95: 864–871, 1980.

    Article  PubMed  CAS  Google Scholar 

  4. Carrell, RW and Travis, J. “Alpha-1-Antitrypsin and the SERPINS.” TIBS. 10: 20–24, 1985.

    CAS  Google Scholar 

  5. Petersen, TE, Dudek-Wojciechowska, G, Sottrup-Jensen, L and Magnusson, S: “Primary Structure of Antithrombin-III (Heparin Cofactor). Partial Homology Between alpha-1-Antitrypsin and Antithrombin-III.” in: The Physiological Inhibitors of Coagulation and Fibrinolysis. D Collen, B Wiman and M Verstraete eds. Elsevier /North Holland Biomedical Press. 43–54, 1979.

    Google Scholar 

  6. Bock, SC, Wion, KL, Vehar, GA and Lawn, RM. “Cloning and Expression of the cDNA for Human Antithrombin III.” Nuc. Acid. Res. 10: 8113–8125, 1982.

    Article  CAS  Google Scholar 

  7. Prochownik, EV, Markham, AF and Orkin, SH. “Isolation of a cDNA Clone for Human Antithrombin III.” J. Biol. Chem. 258: 8389–8394, 1983.

    PubMed  CAS  Google Scholar 

  8. Kurachi, K, Chandra, T, Friezner Degen, SJ, White, TT, Marchioro, TL, Woo, SLC and Davie, EW. “Cloning and sequence of cDNA coding for alpha-1-antitrypsin.” Proc. Natl. Acad. Sci. U.S.A. 78: 6826–6830, 1981.

    Article  PubMed  CAS  Google Scholar 

  9. Lam, LH, Silbert, JE and Rosenberg, RD. “The Separation of Active and Inactive Forms of Heparin.” Biochem. Biophys. Res. Commun. 69: 570–577, 1976.

    Article  PubMed  CAS  Google Scholar 

  10. Lindahl, U, Backstrom, G, Thunberg, L and Leder, IG. “Evidence for a 3-O-sulfated D-glucosamine Residue in the Antithrombin-Binding Sequence of Heparin.” Proc. Natl. Acad. Sci. U.S.A. 77: 6551–6555, 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Casu, B, Oreste, P, Torri, G, Zopetti, G, Choay, J, Lormeau, J and Petitou, M, Sinay, P. “The Structure of Heparin Oligosaccharide Fragments with High Anti-(Factor Xa) Activity Containing the Minimal Antithrombin III-Binding Sequence.” Biochem. J. 197: 599–609, 1981.

    PubMed  CAS  Google Scholar 

  12. Oosta, GM, Gardner, WT, Beeler, DL, and Rosenberg, RD. “Multiple Functional Domains of the Heparin Molecule.” Proc. Natl. Acad. Sci. U.S.A. 78: 829–833, 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Danielsson, A, Raub, E, Lindahl, U and Bjork, I. “Role of Ternary Complexes, in Which Heparin Binds Both Antithrombin and Proteinase, in the Acceleration of the Reactions between Antithrombin and Thrombin or Factor Xa.” J. Biol. Chem. 261: 15467–15473, 1986.

    PubMed  CAS  Google Scholar 

  14. Griffith, MJ. “Kinetics of the Heparin-enhanced Antithrombin III/Thrombin Reaction. Evidence for a Template Model for the Mechanism of Action of Heparin.” J. Biol. Chem. 257: 7360–7365, 1982.

    PubMed  CAS  Google Scholar 

  15. Pomerantz, MW, and Owen, WG. “A Catalytic Role for Heparin. Evidence for a Ternary Complex of Heparin Cofactor, Thrombin, and Heparin.” Biochim. Biophys. Acta. 535: 66–77, 1978.

    Article  PubMed  CAS  Google Scholar 

  16. Blackburn, MN and Sibley, CC. “The Heparin Binding Site of Antithrombin III. Evidence for a Critical Tryptophan Residue.” J. Biol. Chem. 255: 824–826, 1980.

    PubMed  CAS  Google Scholar 

  17. Blackburn, MN, Smith, RL, Sibley, CC and Johnson, VA. “Heparin Binding and Protease Inhibitor Activity of Chemically Modified Antithrombin III.” Ann. NY Acad. Sci. 370: 700–707, 1981.

    Article  PubMed  CAS  Google Scholar 

  18. Blackburn, MN, Smith, RL, Carson, J and Sibley, CC. “The Heparin Binding Site of Antithrombin III. Identification of a Critical Tryptophan in the Amino Acid Sequence.” J. Biol. Chem. 259: 939–941, 1984.

    PubMed  CAS  Google Scholar 

  19. Villanueva, GB and Allen, N. “Refolding Properties of Antithrombin III. Mechanism of Binding to Heparin.” J. Biol. Chem. 258: 14048–14053, 1983.

    PubMed  CAS  Google Scholar 

  20. Fish, WW, Danielsson, A, Nordling, K, Miller, SH, Lam, CF and Bjork, I. “Denaturation Behavior of Antithrombin in Guanidine Hydrochloride. Irreversibility of Unfolding Caused by Aggregation.” Biochemistry. 24: 1510–1517, 1985.

    Article  PubMed  CAS  Google Scholar 

  21. Rosenberg, RD and Damus, PS. “The Purification and Mechanism of Action of Human Antithrombin-Heparin Cofactor.” J. Biol. Chem. 248: 6490–6505, 1973.

    PubMed  CAS  Google Scholar 

  22. Pecon, JM and Blackburn, MN. “Pyridoxylation of Essential Lysines in the Heparin-Binding Site of Antithrombin III.” J. Biol. Chem. 259: 935–938, 1984.

    PubMed  CAS  Google Scholar 

  23. Liu, CS and Chang, JY. “The Heparin Binding Site of Human Antithrombin III. Selective Chemical Modification at Lys 114, Lys 125, and Lys 287 Impairs Its Heparin Cofactor Activity.” J. Biol. Chem. 262: 17356–17361, 1987.

    PubMed  CAS  Google Scholar 

  24. Chang, JY. “Binding of Heparin to Human Antithrombin III Activates Selective Chemical Modification at Lysine 236. Lys-107, Lys-125, and Lys-136 are Situated within the Heparin-Binding Site of Antithrombin III.” J. Biol. Chem. 264: 3111–3115, 1989.

    PubMed  CAS  Google Scholar 

  25. Gettins, P and Wooten, EW. “On the Domain Structure of Antithrombin III. Tentative Localization of the Heparin Binding Region Using 1-H NMR Spectroscopy.” Biochemistry. 26: 4403–4408, 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Koide, T, Ohta, Y and Odani, S. “Chicken Antithrombin. Isolation, Characterization, and Comparison with Mammalian Antithrombins and Chicken Ovalbumin.” J. Biochem. 91: 1223–1229, 1982.

    PubMed  CAS  Google Scholar 

  27. Koide, T, Odani, S, Takahashi, K, Ono, T and Sakuragawa, N. “Antithrombin III Toyama: Replacement of Arginine-47 by Cysteine in Hereditary Abnormal Antithrombin III that Lacks Heparin-Binding Ability.” Proc. Natl. Acad. Sci. U.S.A. 81: 289–293, 1984.

    Article  PubMed  CAS  Google Scholar 

  28. Brunei, F, Duchange, N, Fischer, AM, Cohen, GN and Zakin, MM. “Antithrombin III Alger: A New Case of Arg 47 — Cys Mutation.” Am. J. Hematol. 25: 223–224, 1987.

    Article  Google Scholar 

  29. Owen, MC, Borg, J, Soria, C, Soria, J, Caen, J and Carrell, RW. “Heparin Binding Defect in a New Antithrombin III Variant: Rouen, 47 Arg to His.” Blood. 69: 1275–1279, 1987.

    PubMed  CAS  Google Scholar 

  30. Borg, J, Owen, MC, Soria, J, Caen, J and Carrell, RW. “Proposed Heparin Binding Site in Antithrombin Based on Arg 47. A New Variant Rouen II, 47 Arg to Ser.” J. Clin. Invest. 81: 1292–1296, 1988.

    Article  PubMed  CAS  Google Scholar 

  31. Chang, JY and Tran, TH. “Antithrombin III Basel. Identification of a Pro-Leu Substitution in a Hereditary Abnormal Antithrombin with Impaired Heparin Cofactor Activity.” J. Biol. Chem. 261: 1174–1176, 1986.

    PubMed  CAS  Google Scholar 

  32. Peterson, CB and Blackburn, MN. “Isolation and Characterization of an Antithrombin III Variant with Reduced Carbohydrate Content and Enhanced Heparin Binding.” J. Biol. Chem. 260: 610–615, 1985.

    PubMed  CAS  Google Scholar 

  33. Brennan, SO, George, PM and Jordan, RE. “Physiological Variant of Antithrombin III Lacks Carbohydrate Sidechain at Asn 135.” FEBS Letters. 219: 431–436, 1987.

    Article  PubMed  CAS  Google Scholar 

  34. Brennan, SO, Borg, J and George, PM. “New Carbohydrate site in Mutant Antithrombin (7Ile → Asn) with Decreased Heparin Affinity.” FEBS Letters. 237: 118–122, 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Rosenfeld, L and Danishefsky, I. “A Fragment of Antithrombin that Binds both Heparin and Thrombin.” Biochem J. 237: 639–646, 1986.

    PubMed  CAS  Google Scholar 

  36. Smith, JW and Knauer, DJ. “ A Heparin Binding Site in Antithrombin III. Identification, Purification and Amino Acid Sequence.” J Biol Chem. 262: 11964–11972, 1987.

    PubMed  CAS  Google Scholar 

  37. Samama, JP, Delarue, M, Mourey, L, Choay, J and Moras, D. “Crystallization and Preliminary Crystallographic Data for Bovine Antithrombin III.” J. Mol. Biol. 210: 877–879, 1989.

    Article  PubMed  CAS  Google Scholar 

  38. Huber, R and Carrell, RW. “Implications of the Three-dimensional Structure of Alpha-1-Antitrypsin for Structure and Function of Serpins.” Biochemistry. 28: 8951–8966, 1989.

    Article  PubMed  CAS  Google Scholar 

  39. Bjork, I and Fish, WW. “Production in Vitro and Properties of a Modified Form of Bovine Antithrombin, Cleaved at the Active Site by Thrombin.” J. Biol. Chem. 257: 9487–9493, 1982.

    PubMed  CAS  Google Scholar 

  40. Lau, HK and Rosenberg, RD. “The Isolation and Characterization of a Specific Antibody Population Directed against the Thrombin-Antithrombin Complex.” J. Biol. Chem. 255: 5885–5893, 1980.

    PubMed  CAS  Google Scholar 

  41. McDuffie, FC, Peterson, JM, Clark, G and Mann, KG. “Antigenic Changes Produced by Complex Formation between Thrombin and Antithrombin-III.” J. Immunol. 127: 239–244, 1981.

    PubMed  CAS  Google Scholar 

  42. Wallgren, P, Nordling, K and Bjork, I. “Immunological Evidence for a Proteolytic Cleavage at the Active Site of Antithrombin in the Mechanism of Inhibition of Coagulation Serine Proteases.” Eur. J. Biochem. 116: 493–496, 1981.

    Article  PubMed  CAS  Google Scholar 

  43. Herion, P, Francotte, M, Siberdt D, Garduno Soto, G, Urbain, J and Bollen, A. “Monoclonal Antibodies Against Plasma Protease Inhibitors: Production and Characterization of 15 Monoclonal Antibodies Against Human Antithrombin III. Relation Between Antigenic Determinants and Functional Sites of Antithrombin III.” Blood. 65: 1201–1207, 1985.

    PubMed  CAS  Google Scholar 

  44. Peterson, CB and Blackburn, MN. “Antithrombin Conformation and the Catalytic Role of Heparin. I. Does Cleavage by Thrombin Induce Structural Changes in the Heparin-Binding Region of Antithrombin?” J. Biol. Chem. 262: 7552–7558, 1987.

    PubMed  CAS  Google Scholar 

  45. Villanueva, G and Danishefsky, I. “Conformational Changes Accompanying the Binding of Antithrombin III to Thrombin.” Biochemistry. 18: 810–817, 1979.

    Article  PubMed  CAS  Google Scholar 

  46. Nordenman, B and Bjork, I. “Binding of Low-Affinity and High-Affinity Heparin to Antithrombin. Ultraviolet Difference Spectroscopy and Circular Dichroism Studies.” Biochemistry. 17: 3339–3344, 1978.

    Article  PubMed  CAS  Google Scholar 

  47. Olson, ST and Shore, JD. “Transient Kinetics of Heparincatalyzed Protease Inactivation by Antithrombin III. The Reaction Step Limiting Heparin Turnover in Thrombin Neutralization.” J. Biol. Chem. 261: 13151–13159, 1986.

    PubMed  CAS  Google Scholar 

  48. Peterson, CB and Blackburn, MN. “Antithrombin Conformation and the Catalytic Role of Heparin. II. Is the Heparin-Induced Conformational Change in Antithrombin Required for Rapid Inactivation of Thrombin?” J. Biol. Chem. 262: 7559–7566, 1987.

    PubMed  CAS  Google Scholar 

  49. Einarsson, R and Andersson, LO. “Binding of Heparin to Human Antithrombin III as Studied by Measurements of Tryptophan Fluorescence.” Biochim. Biophys. Acta. 490: 104–111, 1977.

    Article  PubMed  CAS  Google Scholar 

  50. Villanueva, G and Danishefsky, I. “Evidence for a Heparin-Induced Conformational Change on Antithrombin III.” Biochem. Biophys. Res. Commun. 74: 803–809, 1977.

    Article  CAS  Google Scholar 

  51. Peterson, CB, Noyes, CM, Pecon, JM, Church, FC and Blackburn, MN. “Identification of a Lysine Residue in Antithrombin Which is Essential for Heparin Binding.” J. Biol. Chem. 262: 8061–8065, 1987.

    PubMed  CAS  Google Scholar 

  52. Olson, ST, Srinivasan, KR, Bjork, I and Shore, JD. “Binding of High Affinity Heparin to Antithrombin III. Stopped Flow Kinetic Studies of the Binding Interaction.” J. Biol. Chem. 256: 11073–11079, 1981.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boerger, P.R., Wolcott, R.M., Lorio, M., Blackburn, M.N. (1991). Interactions Between The Functional Domains of Antithrombin III. In: Hoyer, L.W., Drohan, W.N. (eds) Recombinant Technology in Hemostasis and Thrombosis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3698-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3698-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6644-7

  • Online ISBN: 978-1-4615-3698-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics