Skip to main content

New Phases of D ≥ 2 Current and Diffeomorphism Algebras in Particle Physics

  • Chapter
Symmetries in Science V
  • 211 Accesses

Abstract

As one who thought deeply about all aspects of symmetries Hermann Weyl [1] had traced their origin in nature to the mathematical character of physical laws. In the last thirty years, the developments in particle physics have been dominated by one single theme, the exploitation of symmetries. They can be either exact or approximate, ultimately fundamental or effective[2]. With its unqualified successes the use of symmetries has become synonymous with that of Lie algebras and groups. In the early seventies the mathematician, Jean Dieudonné [3] wrote: “ Les groupes de Lie sont devenus le centre des mathematiques; on ne peut rien faire de sérieux sans eux”. In this era of gauge and string theories, we may, without much exaggeration, assert the preeminent role at the frontiers of physics of infinite dimensional Lie group theory by replacing the words “des mathematiques” above by “ de la physique théorique”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Weyl, Symmetry,Princeton University Press, Princeton, New Jersey (1952).

    Google Scholar 

  2. R. E. Marshak, in AAAS Symposium on “ Symmetries across the Sciences -1990”

    Google Scholar 

  3. J. Dieudonné, Gazette des Mathematiques (1974) 73.

    Google Scholar 

  4. S. Adler and R. Dashen, Current Algebras and Applications to Particle Physics, Benjamin, N.Y. (1968).

    MATH  Google Scholar 

  5. Y. Néeman, Algebraic Theory of Particle Physics,W.A. Benjamin, Inc., N.Y. Amsterdam (1967).

    Google Scholar 

  6. S. Treiman, R. Jackiw, B. Zumino and E. Witten, Current Algebras and Anomalies, Princeton University Press, Princeton, N.J.(1985).

    Google Scholar 

  7. I. M. Gelfand, M. I. Graev and A. M. Versik, Compositio Math. 42 (1981) 217.

    MathSciNet  Google Scholar 

  8. A. Shapere and F. Wilczek, Geometric Phases in Physics, Advanced Series in Mathematical Physics, Vol.5,World Scientific (1989)

    MATH  Google Scholar 

  9. For a review, see R. Jackiw, MIT preprint CTP#1824 (December 1989)

    Google Scholar 

  10. Y. Aharonov and D. Bohm, Phys. rev. 115 (1959) 485.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. J. Mickelsson, Comm. Math. Phys. 110 (1987) 173.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. E. Witten, Comm. Math. Phys. 92 (1984) 455.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. P. Jordan, Z. Phys. 93 (1935) 465.

    ADS  Google Scholar 

  14. P. Jordan, Z. Phys. (1937) 229.

    Google Scholar 

  15. T. Goto and T. Imamura, Prog. Theor. Phys. 14 (1955) 396.

    Article  ADS  Google Scholar 

  16. J. Schwinger, Phys. Rev. Lett. 3 (1959) 296.

    Article  ADS  Google Scholar 

  17. S. Coleman, Phys. Rev. D11 (1975) 2088.

    ADS  Google Scholar 

  18. S. Mandelstam, Phys. Rev. D11 (1975) 3026.

    MathSciNet  ADS  Google Scholar 

  19. A. Y. Morozov, Soy. Phys. Usp. 29 (1986) 993.

    Article  ADS  Google Scholar 

  20. M. A. Shifman, Soy. Phys. Usp. 32 (1989) 289.

    Article  ADS  Google Scholar 

  21. V. G. Knizhnik and A. B. Zamolodchikov, Nucl. Phys. B247 (1984) 83.

    Article  MathSciNet  ADS  Google Scholar 

  22. S. Novikov, Russian Math. Surveys 37 (1981) 1.

    Article  ADS  Google Scholar 

  23. J. L. Cardy, in Phase Transitions and Critical Phenomena C.Domb, J. L. Lebowitz, Eds.,Academic Press, N.Y.

    Google Scholar 

  24. C. Itzykson, H. Saleur and J.-B. Zuber, Conformal Invariance and Applications to Statistical Mechanics,World Scientific, Singapore (1988)

    MATH  Google Scholar 

  25. A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Nucl. Phys. 241B (1984) 333

    Article  MathSciNet  ADS  Google Scholar 

  26. M. Virasoro, Phys. Rev. D1 (1970) 2933.

    ADS  Google Scholar 

  27. R. Bott, Enseign. Math. 23 (1977) 209.

    MathSciNet  MATH  Google Scholar 

  28. A. A. Kirillov, in Lecture Notes in Math. 1982 (Springer) 101

    Google Scholar 

  29. A. M. Polyakov, ZhETF Lett. 12 (1970) 538.

    Google Scholar 

  30. V. Kac, Infinite Dimensional Groups with Applications, Springer-Verlag (1985).

    Google Scholar 

  31. P. Goddard and D. Olive, in Advanced Series in Mathematical Physics,World Scientific, Singapore (1988).

    Google Scholar 

  32. V. G. Kac and D. H. Petersen, Adv. Math. 53 (1984) 125.

    Article  MATH  Google Scholar 

  33. C. M. Sommerfield, Phys. Rev. 176 (1968) 2019.

    Article  ADS  Google Scholar 

  34. H. Sugawara, Phys. rev. 170 (1968) 1659.

    Article  ADS  Google Scholar 

  35. I. G. Frenkel and V. G. Kac, Inventiones Math. 62 (1980) 23.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. I. Frenkel, in Proceedings of the International Congress of Mathematicians -1986, Eds. 821

    Google Scholar 

  37. R. S. Ismagilov, in Proceedings of the International Congress of Mathematicians (PWN, Warsaw, 1983), pp. 861.

    Google Scholar 

  38. U.-G. Meissner, Phys. Rep., 161C (1988) 213.

    Article  ADS  Google Scholar 

  39. J. Gipson and H. C. Tze, Nucl. Phys. B183 (1981) 524.

    Article  MathSciNet  ADS  Google Scholar 

  40. I. Bars, in Vertex Operators in Mathematics and Physcs, J. Lepowski, S. Mandelstam and I. M. Singer, Eds.,Springer-Verlag (1985), p. 373

    Google Scholar 

  41. S. K. Bose and S. A. Bruce, Univ. of Notre Dame Preprint 1990.

    Google Scholar 

  42. B. L. Feigin, Russian. Math. Surveys 35 (1980) 239.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. J. Mickelsson, Comm. Math. Phys. 97 (1985) 361.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. L. Faddeev and S. Shatashvili, Theor. Mat. Fiz. 60 (1984) 206.

    MathSciNet  Google Scholar 

  45. N. K. Pak and H. C. Tze, Ann. Phys. 117 (1979) 164.

    Article  MathSciNet  ADS  Google Scholar 

  46. E. Witten, Nucl. Phys. B223 (1983) 433.

    Article  MathSciNet  ADS  Google Scholar 

  47. G. Adkins, C. R. Nappi and E. Witten, Nucl.Phys. B228 (1983) 552.

    Article  ADS  Google Scholar 

  48. A. P. Balachadran, V. P. Nair, S. G. Rajeev and A. Stem, Phys. Rev. Lett. 49 (1982)1124; Phys.Rev. D27(1983)1153.

    Google Scholar 

  49. A. P. Balachandran, in Proceedings of the Yale Theoretical Advanced Study Institute, Vol.1, M. Bowick and F.Gürsey, Eds.,Word Scientific (1985), pp.1–81

    Google Scholar 

  50. T. H. R. Skyrme, Proc. Roy. Soc. A260 (1961) 127.

    Google Scholar 

  51. T. H. R. Skyrme, Proc. Roy. Soc. A262 (1961) 237.

    Google Scholar 

  52. T. H. R. Skyrme, J. Math. Phys. 12 (1971) 1735.

    Article  MathSciNet  ADS  Google Scholar 

  53. S. G. Rajeev, Phys. Rev. D29 (1984) 2944.

    ADS  Google Scholar 

  54. V. Bargmann, Ann. Math. 59 (1954) 1.

    Article  MathSciNet  MATH  Google Scholar 

  55. E. Witten, Nucl. Phys. B223 (1983) 422.

    Article  MathSciNet  ADS  Google Scholar 

  56. J. Mickelsson and S. G. Rajeev, Corn. Math, Phys. 116 (1988) 365. See in particular J. Mickelsson and S. G. Rajeev, Preprint UR-1178 -ER-13065–636 (July 1990)

    Google Scholar 

  57. A. N. Pressley and G. Segal, Loop Groups and Their Representations (Oxford University Press, Oxford, U.K. (1986).

    Google Scholar 

  58. M. Löscher, Nucl. Phys. B236 (1989) 557.

    Article  ADS  Google Scholar 

  59. J. Mickelsson, Phys. Rev. D32 (1984) 436.

    MathSciNet  ADS  Google Scholar 

  60. V. Arnold, Ann. Inst. Fourier 16 (1966) 319.

    Article  Google Scholar 

  61. J. Marsden and A. Weinstein, Physica 7D (1983) 305.

    MathSciNet  ADS  Google Scholar 

  62. G. A. Goldin, R. Menikoff and D. H. Sharp, Phys. Rev. Lett. 51 (1983) 2246.

    Article  MathSciNet  ADS  Google Scholar 

  63. I. Bars, USC Preprint USC-89/HEP14 (Oct.1989).

    Google Scholar 

  64. I. Bars, C. N. Pope and E. Sezgin, Phys. Lett. B210 (1988) 85.

    MathSciNet  ADS  Google Scholar 

  65. T. A. Arakelyan and G. K. Savvidy, Phys. Lett. B214 (1988) 350.

    MathSciNet  ADS  Google Scholar 

  66. D. B. Fuks, in Cohomology of Infinite -Dimensional Lie Algebras, F. I. Kizner, Ed. Nauka, Moscow (1984), pp. 329.

    Google Scholar 

  67. V. Arnold, Mathematical Methods of Classical Mechanics,Springer-Verlag New York, Inc. (1978)

    MATH  Google Scholar 

  68. I. Bakas, Phys.Lett. B228 (1989) 57.

    MathSciNet  ADS  Google Scholar 

  69. F. Figueirido and E. Ramos, Phys. Lett. 238B (1990) 247.

    MathSciNet  ADS  Google Scholar 

  70. B. L. Feigin and D. B. Fuchs, Funct. Anal. Appl. 16 (1982) 114.

    Article  Google Scholar 

  71. F. Gürsey and H. C. Tze, Lett. Math. Phys. 8 (1984) 387.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  72. F. Gürsey, Private Communication and Yale preprint in preparation 1990

    Google Scholar 

  73. V. P. Nair and J. Schiff, (Columbia, 1990)

    Google Scholar 

  74. Y. Eisenberg, Phys. Lett. B236 (1989) 349.

    MathSciNet  ADS  Google Scholar 

  75. Y. Eisenberg, Phys. Lett. B235 (1989) 95.

    MathSciNet  ADS  Google Scholar 

  76. E. Witten, Comm. Math. Phys. 121 (1989) 351.

    MATH  Google Scholar 

  77. For the earliest papers on “anyonic” phenomena see G. A. Goldin, R. Menikoff and D. H. Sharp, J.Math.Phys. 22 (1981) 1664; Phys.Rev. Lett. 51 (1983) 2246; G. A. Goldin and D. H. Sharp, Phys. Rev. D 28 (1983) 830; F. Wilczek, Phys. Rev. Lett. 48 (1982) 1144; Phys. Rev. Lett. 49 (1982) 957.

    Google Scholar 

  78. E. Witten, Comm. Math. Phys. 117 (1988) 353.

    MATH  Google Scholar 

  79. A. M. Polyakov, Mod. Phys. Lett. A3 (1988) 325.

    MathSciNet  ADS  Google Scholar 

  80. A. Polyakov, Les Houches Lectures 1988).

    Google Scholar 

  81. C. H. Tze, Int. J. Mod. Phys. A3 (1988) 1959.

    MathSciNet  ADS  Google Scholar 

  82. C. H. Tze and S. Nam, Ann. Phys. 193 (1989) 419.

    Article  MathSciNet  ADS  Google Scholar 

  83. F. Wilczek and A. Zee, Phys. Rev. Lett. 51 (1983) 2250.

    Article  MathSciNet  ADS  Google Scholar 

  84. M. J. Bowick, D. Karabali and L. C. R. Wijewardhana, Nucl.Phys. B271 (1986) 417.

    MathSciNet  ADS  Google Scholar 

  85. G. Semenoff and P. Sodano, Nucl. Phys. B328 (1989) 753.

    Article  MathSciNet  ADS  Google Scholar 

  86. D. Karabali, CCNY Preprint CCNY-HEP-90/51

    Google Scholar 

  87. G. Calugareanu, Rev. Math. Pures Appl. 4 (1961) 588.

    Google Scholar 

  88. F. H. C. Crick, Proc. Natl. Acad. Sci. USA 73 (1976) 2639.

    Article  MathSciNet  ADS  Google Scholar 

  89. F. B. Fuller, Proc. Natl. Acad. Sci.USA 68 (1971) 815.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  90. H. Hopf, Fund. Math. 25 (1935) 427.

    Google Scholar 

  91. H. Hopf, Math. Ann. 104 (1931) 637.

    Article  MathSciNet  Google Scholar 

  92. C. Godbillon, Elements de Topologie Algebrique, Hermann, Paris (1971).

    Google Scholar 

  93. J. H. White, Am. J. Math. 91 (1969) 693.

    Article  MATH  Google Scholar 

  94. J. F. Adams, Ann. of Math. 72 (1960) 20.

    Article  MathSciNet  MATH  Google Scholar 

  95. G. Toulouse and M. J. Kiernan, J. Phys. Lett. 37 (1976) L-149.

    Article  Google Scholar 

  96. M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld and Y. I. Manin, Phys. Lett. A65 (1978) 185.

    MathSciNet  ADS  Google Scholar 

  97. J. Grundberg, T. H. Hanson, A. Karlhede and U. Lindstrom, Phys. Lett. B218 (1989) 321.

    ADS  Google Scholar 

  98. R. I. Nepomechie and A. Zee, in Quantum Field Theory and Ouantum Statistics. (Fradkin Festschrift), I. A. Batalin et al., Eds., Adam Hilger, Bristol (1986).

    Google Scholar 

  99. T. H. Hansson, A. Karlhede and M. Rocek, Phys. Lett. B225 (1989) 92.

    MathSciNet  ADS  Google Scholar 

  100. G. T. Horowitz, Commun.Math. Phys. 125 (1989) 417.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  101. S. Weinberg, Notices of the AMS (1986) 728.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tze, CH. (1991). New Phases of D ≥ 2 Current and Diffeomorphism Algebras in Particle Physics. In: Gruber, B., Biedenharn, L.C., Doebner, H.D. (eds) Symmetries in Science V. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3696-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3696-3_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6643-0

  • Online ISBN: 978-1-4615-3696-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics