Skip to main content

Modulation of Phosphatidylinositol-4,5-Diphosphate (PIP2) Phospholipase C Activity by 4-Hydroxyalkenals

  • Chapter
Chemical Carcinogenesis 2

Abstract

Hepatocarcinogenesis is followed by significant changes in lipid peroxidation rate. Normal liver is highly susceptible to lipoperoxidationl; the degree of hepatic basal lipid peroxidation can be strongly increased by pro-oxidant agents, such as ascorbate or ADF/Fe2+; the response to prooxidant substances is much lower both in hyperplastic nodules and in hepatomas induced by diethylnitrosamine (DEN)2. On the contrary, the increase of lipid peroxidation rate induced in liver membranes by a choline-deficient diet appears to be important in tumor promotion3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Ugazio, L. Gabriel, and E. Burdino, Perossidazione lipidica e processi proliferativi. Atti Comm. Soc. Ital. Patol. 11: 325 (1969).

    Google Scholar 

  2. M. U. Dianzani, R. A. Canuto, M. A. Rossi, G. Poli, R. Garcea, M. E. Biocca, G. Cecchini, F. Biasi, M. Ferro, and A. M. Bassi, Further experiments on lipid peroxidation in transplanted and experimental hepatomas, Toxicol. Pathol. 12: 189 (1984).

    Article  PubMed  CAS  Google Scholar 

  3. M. I. Perera, A. J. Demetris, S. L. Katyal, and H. Shinozuka, Lipid peroxidation of liver microsome membranes induced by choline deficient diets and its relationship to the diet-induced promotion of the induction of y-glutamyltranspeptidase-positive foci, Cancer Res. 45: 253 (1985).

    Google Scholar 

  4. M. U. Dianzani, L. Paradisi, G. Barrera, M. A. Rossi, and M. Parole, The action of 4-hydroxynonenal on the plasma membrane enzymes from rat hepatocytes, in: “Free radicals, metal ions and biopolymers,” P. C. Beaumont, D. J. Deeble, B. J. Parson, and C. Rice-Evans, eds., Richelieu Press, London, (1989).

    Google Scholar 

  5. H. Esterbauer, Aldehydic products of lipid peroxidation, in: “Free radicals, lipid peroxidation and cancer,” D. C. H. McBrien, and T. F. Slater, eds., Academic Press, London (1982).

    Google Scholar 

  6. M. J. Berridge, Inositol triphosphate and diacylglycerol as second messengers, Biochem. J. 220: 345 (1984).

    PubMed  CAS  Google Scholar 

  7. I. Magnaldo, H. Talwar, W. B. Anderson, and J. Poyssegur, Evidence for a GTP-binding protein coupling thrombin receptor to PIP2-phospholipase C in membranes of hamster fibroblasts, F.E.B.S. Lett. 210: 6 (1987).

    Article  CAS  Google Scholar 

  8. U. Lowry, H. S. Rosenbrough, A. L. Farr, and R. J. Randall, Protein measurement with the Folin reagent, J. Biol. Chem. 193: 265 (1951).

    PubMed  CAS  Google Scholar 

  9. M. A. Wallace, and J. N. Fain, Guanosine 5’-O-thiotriphosphate stimulates phospholipase C of rat hepatocytes, J. Biol. Chem. 260: 9527 (1985).

    PubMed  CAS  Google Scholar 

  10. A. A. Abdel-Latif, Calcium mobilizing receptors, polyphosphoinositides and the generation of second messengers, Pharmacol. Rev. 38: 227 (1986).

    PubMed  CAS  Google Scholar 

  11. P. W. Majerus, T. M. Connolly, H. Deckmyn, T. S. Ross, T. E. Bross, H. Ishii, V. S. Bansal, and D. B. Wilson, The metabolism of phosphoinositide derived messenger molecules, Science 234: 1519 (1986).

    Article  PubMed  CAS  Google Scholar 

  12. M. W. Roomi, R.H. Ho, D. S. R. Sarma, and E. Farber, A common biochemical pattern in preneoplastic hepatocyte nodules generated in four different models in the rat, Cancer Res. 45: 564 (1985).

    PubMed  CAS  Google Scholar 

  13. J. P. Heslop, D. M. Blakeley, K. D. Brown, R. F. Irvine, and M. J. Berridge, Effects of bombesin and insulin on inositol (1,4,5) triphosphate and inositol (1,3,4) triphosphate formation in swiss 3T3 cells, Cell 47: 703 (1986).

    Article  PubMed  CAS  Google Scholar 

  14. F. J. G. M. Van Kuijk, D. W. Thomas, R. J. Stephens, and E. A. Dratz, Occurrence of 4-hydroxyalkenals in rat tissue determined as pentafluorobenzyl oxime derivatives by gas chromatography mass spectrometry, Biochem. Biophys. Res. Commun. 139: 144 (1986).

    Article  PubMed  Google Scholar 

  15. B. F. Trump, I. K. Berezesky, and P. C. Phelps, The role of calcium in cell injury and repair:a hypothesis, Surv. Syn. Path. Res. 4: 248 (1985).

    CAS  Google Scholar 

  16. P. O. Seglen, H. Skomedal, S. Saeter, P. E. Scharze, and J. M. Nesland, Neuroendocrine dysdifferentiation and bombesin production in carcinogen-induced hepatocellular rat tumours, Carcinogenesis 10: 21 (1989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rossi, M.A., Fidale, F., Garramone, A., Dianzani, M.U. (1991). Modulation of Phosphatidylinositol-4,5-Diphosphate (PIP2) Phospholipase C Activity by 4-Hydroxyalkenals. In: Columbano, A., Feo, F., Pascale, R., Pani, P. (eds) Chemical Carcinogenesis 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3694-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3694-9_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6642-3

  • Online ISBN: 978-1-4615-3694-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics