Skip to main content

Genetic Susceptibility to Murine Hepatocarcinogenesis

  • Chapter
Chemical Carcinogenesis 2

Summary

Some murine strains are characterized by a high susceptibility to both spontaneous and carcinogen-induced hepatocarcinogenesis (C3H, CF-1, CBA), whereas other strains are resistant (C57BL/6, BALB/c). The liver carcinogenesis process, as well as carcinogenesis in other organs, is not a single step process, but involves multiple steps leading from the normal hepatocyte to the hepatocellular carcinoma. Therefore, genetic differences between murine strains may reside in genetic loci controlling either initiation or promotion/progression stages. We have observed, using a medium-term liver carcinogenesis bioassay and stereological analysis, that the total number of NDEA-induced liver-nodules/cm3 was about the same in a susceptible F1 hybrid (B6C3) and in a resistant one (B6C), indicating that both hybrids were equally sensitive to NDEA-initiation. However, the size of the nodules was much larger in the susceptible compared to the resistant hybrid. Therefore, we proposed that a major difference is not in the susceptibility to initiation, but in the susceptibility to progression. The hepatocytes, once initiated, grow, progress, and give rise to grossly evident tumors more efficiently and more rapidly in the susceptible than in the resistant strain. In a subsequent study we have treated B6C3F2 mice with NDEA and then measured liver nodule frequency and size, using stereological analysis. We have found that almost all mice had a similar total number of nodules/cm3. However, when the size distribution of nodules was analysed, the F2 population could be easily divided into two subgroups. The subgroups identified a population of resistant mice and another one of susceptible mice. The percentage of resistant mice was in agreement with the hypothesis that a single genetic locus accounts for the major part of the difference in the susceptibility to progression between C3H/He and C57BL/6 mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Adams, A. W. Harris, C. A. Pinkert, L. M. Corcoran, W. S. Alexander, S. Cory, R. D. Palmiter, and R. L. Brinter, The c-myc oncogene driven by immonoglobulin enhancers induces lymphoid malignancy in transgenic mice, Nature 318:533 (1985).

    Article  PubMed  CAS  Google Scholar 

  2. F. F. Becker, Morphological classification of mouse liver tumors based on biological characteristic, Cancer Res. 42:3918 (1982).

    PubMed  CAS  Google Scholar 

  3. F. F. Becker, Tumor phenotype and susceptibility to progression as an expression of subpopulation of initiated murine cells, Cancer Res. 45:768 (1985).

    PubMed  CAS  Google Scholar 

  4. F. F. Becker, Progression of tumor histiotype during mouse hepatocarcinogenesis associated with the viable yellow (AVY) gene, Cancer Res. 46:2241 (1986).

    PubMed  CAS  Google Scholar 

  5. M. Breuer, R. Slebos, S. Verbeek, M. van Lohuizen, E. Wientjens, A. Berns, Predisposition of pim-1 transgenic mice to ENU-induced lymphomagenesis. Fifth Annual Meeting on Oncogenes, Frederick, MD, Book of Abstracts, 381, (1989).

    Google Scholar 

  6. B. R. Davis, B. K. Brightman, K. G. Chandy, and H. Fan, Characterization of a preleukemic state induced by Moloney murine leukemia virus: Evidence for two infection events during leukemogenesis, Proc. Natl. Acad. Sci. 84:4875 (1987).

    Article  PubMed  CAS  Google Scholar 

  7. G. Della Porta, J. Capitano, L. Parmi, M. I. Colnaghi, Cancerogenesi da uretano in topi neonati, lattanti ed adulti dei ceppi C57BL, C3H, BC3F1, C3Hf e SWR, Tumori 53:81 (1967).

    PubMed  Google Scholar 

  8. H. K. De Munter, L. Den Engelse, and P. Emmelot, Studies on lung tumours. IV. Correlation between [3H]thymidine labelling of lung and liver cells and tumour formation in GRS/A and CH3f/A male mice following administration of dimethylnitrosamine, Chem. Biol. Interactions 24:299 (1979).

    Article  Google Scholar 

  9. T. A. Dragani, G. Sozzi, and G. Della Porta, Spontaneous and urethan-induced tumor incidence in B6C3F1 versus B6CF1 mice, Tumori 70:485 (1984).

    PubMed  CAS  Google Scholar 

  10. T. A. Dragani, G. Manenti, and G. Della Porta, Genetic susceptibility to murine hepatocarcinogenesis is associated with high growth rate of NDEA-initiated hepatocytes, J. Cancer Res. Clin. Oncol. 113:223 (1987).

    Article  PubMed  CAS  Google Scholar 

  11. N. R. Drinkwater, and J. J. Ginsler, Genetic control of hepatocarcinogenesis in C57BL/6J and C3H/HeJ inbred mice, Carcinogenesis 7:1707 (1986).

    Article  Google Scholar 

  12. P. H. Duesberg, Retrovirus as carcinogens and pathogens: expectations and reality, Cancer Res. 47:1199 (1987).

    PubMed  CAS  Google Scholar 

  13. E. Farber, Cellular biochemistry of the stepwise development of cancer with chemicals: G.H.A. Clowes Memorial Lecture, Cancer Res. 44:5463 (1984).

    PubMed  CAS  Google Scholar 

  14. M. Festing, “Inbred Strains in Biomedical Research,” Oxford University Press, New York (1979).

    Google Scholar 

  15. D. Hanahan, Dissecting multistep tumorigenesis in trasgenic mice, Ann. Rev. Genet. 22:479 (1988).

    Article  PubMed  CAS  Google Scholar 

  16. M. H. Hanigan, C. J. Kemp, J. J. Ginsler, and N. R. Drinkwater, Rapid growth of preneoplastic lesions in hepatocarcinogen-sensitive C3H/HeJ male mice relative to C57BL/6J male mice, Carcinogenesis 9:885 (1988).

    Article  PubMed  CAS  Google Scholar 

  17. J. W. Hartley, N. K. Wolford, L. J. Old, and W. P. Rowe, A new class of murine leukemia virus associated with development of spontaneous lymphomas, Proc. Natl. Acd. Sci. USA 74:789 (1977).

    Article  CAS  Google Scholar 

  18. W. S. Hayward, B. G. Neel, and S. M. Astrin, Activation of a cellular oncogene by promoter insertions in ALV-induced lymphoid leukosis, Nature 290:475 (1981).

    Article  PubMed  CAS  Google Scholar 

  19. W. A. Held, J. J. Mullins, N. J. Kuhn, J. F. Gallagher, G. D. Gu, and K. W. Gross, T antigen expression and tumorigenesis in transgenic mice containing a mouse major urinary protein/SV40 T antigen hybrid gene, EMBO J. 8:183 (1989).

    PubMed  CAS  Google Scholar 

  20. J. Hilgers, and P. Bentvelzen, Interaction between viral and genetic factors in murine mammary cancer, Adv. Cancer Res. 26:143 (1978).

    Article  PubMed  CAS  Google Scholar 

  21. N. E. Hynes, B. Groner, and R. Michalides, Mouse mammary tumor virus: transcriptional control and involvement in tumorigenesis, Adv. Cancer Res. 41:155 (1984).

    Article  PubMed  CAS  Google Scholar 

  22. N. A. Jenkins, and N. G. Copeland, Transgenic mice in cancer research, Important Adv. Oncol. 61–77 (1989).

    Google Scholar 

  23. H. Land, L. Parada, and R. A. Weinberg, Tumorigenic conversion of primary embryo fibroblasts requires at least two co-operating oncogenes, Nature 304:596 (1983).

    Article  PubMed  CAS  Google Scholar 

  24. J. C. Lee, and J. N. Ihle, Chronic immune stimulation is required for Moloney leukemia virus-induced lymphomas, Nature 289: 407 (1981)

    Article  PubMed  CAS  Google Scholar 

  25. F. Lilly, and T. Pincus, Genetic control of murine viral leukemogenesis, Adv. Cancer Res. 17:231 (1973).

    Article  Google Scholar 

  26. F. Lilly, M. L. Duran-Reynals, and W. P. Rowe, Correlation of early murine leukemia virus titer and H2 type with spontaneous leukemia in mice of the BALB/c x AKR cross: A genetic analysis, J. Exp. Med. 141:882 (1975).

    PubMed  CAS  Google Scholar 

  27. A. M. Malkinson, M. N. Nesbitt, and E. Skamene, Susceptibility to urethan-induced pulmonary adenomas between A/J and C57BL/6J mice: use of AXB and BXA recombinant inbred lines indicating a three-locus genetic model, J. Natl. Cancer Inst. 75:971 (1985)

    PubMed  CAS  Google Scholar 

  28. D. Meruelo, and R. Bach, Genetics of resistance to virus-induced leukemias, Adv. Cancer Res. 40:107 (1983).

    Article  PubMed  CAS  Google Scholar 

  29. A. Messing, H. Y. Chen, R. D. Palmiter, and R. L. Brinster, Peripheral neuropathies, hepatocellular carcinomas and islet cell adenomas in transgenic mice, Nature 316:461 (1985).

    Article  PubMed  CAS  Google Scholar 

  30. M. Naito, K. J. Chenicek, Y. Naito, and J. DiGiovanni, Susceptibility to phorbol ester skin tumor promotion in (C57BL/6 x DBA/2)F1 mice is inherited as an incomplete dominant trait: evidence for multi-locus involvement, Carcinogenesis 9:639 (1988).

    Article  PubMed  CAS  Google Scholar 

  31. S. Nandi, and C. M. McGrath, Mammary neoplasia in mice, Adv. Cancer Res. 17:353 (1973).

    Article  Google Scholar 

  32. R. Nusse, and H. E. Varmus, Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome, Cell. 31:99 (1982).

    Article  PubMed  CAS  Google Scholar 

  33. R. D. Palmiter, and R. L. Brinster, Germ-line transformation of mice, Ann. Rev. Genet. 20:465 (1986).

    Article  PubMed  CAS  Google Scholar 

  34. V. K. Pathak, R. Strange, L. J. T. Young, D. W. Morris, and R. D. Cardiff, Survey of int region DNA rearrangements in C3H and BALB/cfC3H mouse mammary tumor system, J. Natl. Cancer Inst. 78:327 (1987).

    PubMed  CAS  Google Scholar 

  35. G. Peters, S. Brookes, R. Smith, et al., Tumorigenesis by mouse mammary tumor virus: Evidence for a common region for provirus integration in mammary tumors, Cell. 33:369 (1983).

    Article  PubMed  CAS  Google Scholar 

  36. R. Peto, Epidemiology, multistage models, and short-term mutagenicity tests, in: “Origins of Human Cancer,” H. H. Hiatt, J. D. Watson, and J. A. winsten, eds., Cold Spring Harbor Press, New York (1977).

    Google Scholar 

  37. H. C. Pitot. Progression: The terminal stage in carcinogenesis, Jpn. J. Cancer Res. 80:599 (1989).

    Article  PubMed  CAS  Google Scholar 

  38. T. D. Pugh, J.H. King, H. Koen, D. Nychka, J. Choyer, G. Wahba, Y. He, and S. Goldfarb, Reliabe stereological method for estimating the number of microscopic hepatocellular foci from their transections, Cancer Res. 43:1261 (1983).

    PubMed  CAS  Google Scholar 

  39. s. H. Reynolds, S. J. Stowers, R. M. Patterson, R. R. Maronpot, S. A. Aaronson, and M. W. Anderson, Activated oncogenes in B6C3F1 mouse liver tumors: implications for risk assessment, Science 237:1309 (1987).

    Article  PubMed  CAS  Google Scholar 

  40. R. Risser, J. M. Horowitz, and J. Mccubrey, Endogenous mouse leukemia viruses, Ann. Rev. Genet. 17:85 (1983).

    Article  PubMed  CAS  Google Scholar 

  41. W. P. Rowe, J. W. Hartley, and T. Bremner, Genetic mapping of a murine leukemia virus-inducing locus of AKR mice, Science 178:860 (1972).

    Article  PubMed  CAS  Google Scholar 

  42. W. P. Rowe, and T. Pincus, Quantitative studies of naturally occuring murine leukaemia virus infection of AKR mice, J. Exp. Med. 135:429 (1972).

    Article  PubMed  CAS  Google Scholar 

  43. E. P. Sandgren, C. J. Quaife, C. A. Pinkert, R. D. Palmiter, and R. L. Brinster, Oncogene-induced liver neoplasia in transgenic mice, Oncogene 4:715 (1989).

    PubMed  CAS  Google Scholar 

  44. R. C. Seeger, G. M. Brodeur, H. Sather, A. Dalton, S. E. Siegel, K. Y. Wong, and D. Hammond, Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas, N. Engl. J. Med. 313:1111 (1985).

    Article  PubMed  CAS  Google Scholar 

  45. G. Selten, H. T. Cuypers, M. Zijlstra, C. Melif, and A. Berns, Involvement of c-myc in MuLV-induced T cell lymphomas in mice: frequency and mechanisms of activation, EMBO J. 3:3215 (1984).

    PubMed  CAS  Google Scholar 

  46. G. Selten, H. T. Cuypers, and A. Berns, Proviral activation of the putative oncogene Pim-1 in MuLV induced T-cell lymphomas, EMBO J. 4:1793 (1985).

    PubMed  CAS  Google Scholar 

  47. P. Shubik, Progression and promotion, J. Natl. Cancer Inst. 73:1005 (1984).

    PubMed  CAS  Google Scholar 

  48. D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich, and W. L. McGuire, Human breast cancer:correlation of relapse and survival with amplification of the HER-2/neu oncogene, Science 235:177 (1987).

    Article  PubMed  CAS  Google Scholar 

  49. S. J. Stower, R. W. Wiseman, J. M. Ward, E. C. Miller, J. A. Miller, M. W. Anderson, and A. Eva, Detection of activated proto-oncogenes in N-nitrosodiethylamine-induced liver tumors: a comparison between B6C3F1 mice and Fisher 344 rats, Carcinogenesis 9:271 (1988).

    Article  Google Scholar 

  50. H. Van der Putten, W. Quint, J. Van Raaji, E. R. Maandag, I. M. Verma, and A. Berns, M-MuLV-induced leukemogenesis: integration and structure of recombinant proviruses in tumors, Cell. 24:729 (1981).

    Article  PubMed  Google Scholar 

  51. M. Van Lohuizen, S. Verbeek, P. Krimpenfort, J. Domen, C. Saris, T. Radaszkiewicz, and A. Berns, Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors, Cell. 56:673 (1989).

    Article  PubMed  Google Scholar 

  52. M. Vogt, Properties of “Mink cell focus-inducing” (MCF) virus isolated from spontaneous lymphoma lines of BALB/c mice carrying Moloney leukemia virus as an endogenous virus, Virology 93:226 (1979).

    Article  PubMed  CAS  Google Scholar 

  53. J. M. Ward, D. G. Goodman, R. A. Squire, K. C. Chu, and M. S. Linhart, Neoplastic and nonneoplastic lesions in aging (C57BL/6NxC3H/HeN)F1 (B6C3F1) J. Natl. Cancer Inst. 63:849 (1979).

    PubMed  CAS  Google Scholar 

  54. I. B. Weinstein, The origins of human cancer: molecular mechanisms of carcinogenesis and their implications for cancer prevention and treatments-Twenty-seventh G.H.A. Clowes memorial award lecture, Cancer Res. 48:4135 (1988).

    PubMed  CAS  Google Scholar 

  55. R. W. Wiseman, S. J. Stowers, E. C. Miller, M. W. Anderson, and J. A. Miller, Activating mutations of the c-Ha-ras protooncogene in chemically induced hepatomas of the male B6C3F1 mouse, Proc. Natl. Acad. Sci. USA 83:5825 (1986).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dragani, T.A., Manenti, G., Colombo, B.M., Porta, G.D. (1991). Genetic Susceptibility to Murine Hepatocarcinogenesis. In: Columbano, A., Feo, F., Pascale, R., Pani, P. (eds) Chemical Carcinogenesis 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3694-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3694-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6642-3

  • Online ISBN: 978-1-4615-3694-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics