Skip to main content

Acoustic Phase Conjugation Using Nonlinear Electroacoustic Interaction and its Application to Scanning Acoustic Imaging Systems

  • Chapter
Acoustical Imaging

Part of the book series: Acoustical Imaging ((ACIM,volume 18))

  • 224 Accesses

Abstract

Scanning acoustic imaging systems such as acoustic microscopes and acoustic flaw detectors are now widely used in industrial and medical researches. The advantage of acoustic imaging is its ability of visualizing the inside of optically opaque materials. These systems, however, are still accompanied with a common drawback. That is, when we observe a sample which has a non-flat surface, the surface image is always superposed on the internal image. This is caused by the refraction of the acoustic beam at the surface of the sample. It induces the deflection of the beam and/or the distortion of the wavefront, and then the shape of the wavefront of the detected beam becomes different from the shape of the transducer. This fact restricts the reliable usage of acoustic imaging to flat-topped samples and the removal of the surface roughness effect has been a target of study in acoustic imaging [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. A. Reinholdtsen and B. T. Khuri-Yakub, Removing the effects of surface roughness from low-frequency acoustic images, in: “Review of Progress in Quantitative NDE”, Plenum, New York (1988).

    Google Scholar 

  2. R. A. Fisher, “Optical Phase Conjugation”, Academic, New York (1983).

    Google Scholar 

  3. B. Ya. Zel’dovich, N. F. Pilipetsky, and V. V. Shkunov, “Principles of Phase Conjugation”, Springer, Berlin (1985).

    Google Scholar 

  4. N. P. Andreeva, F. V. Bunkin, D. V. Vlasov, and K. Karshiev, Experimental observation of acoustic phase conjugation at a liquid surface, Sov. Tech. Phys. Matt., 8, 45 (1982).

    Google Scholar 

  5. E. A. Zabolotskaya, Phase conjugation of sound beams in connection with four-phonon interaction in a liquid containing gas bubbles, Sov. Phys. Acoust., 30, 462 (1984).

    Google Scholar 

  6. F. V. Bunkin, D. V. Vlasov, E. A. Zabolotskaya, and Yu. A. Kravtsov, Phase conjugation of sound beams in four-phonon interaction with temperature waves, Sov. Phys. Acoust., 28, 440 (1982).

    Google Scholar 

  7. T. Sato, H Kataoka, T. Nakayama, and Y. Yamakoshi, Ultrasonic phase conjugation using micro particle suspended cell and its application, in: “Acoustical Imaging vol. 17”, Plenum, New York (1989), p.361.

    Chapter  Google Scholar 

  8. N. S. Shiren, R. L. Melcher, and T. G. Kazyaka, Multiple= quantum phase conjugation in microwave acoustics, IEEE J. Ouantum Electron., QE-22, 1457 (1986).

    Article  ADS  Google Scholar 

  9. V. I. Reshetzky, Phase conjugate reflection and amplification of a bulk acoustic wave in piezoelectric crystals, J. Phys. C, 17, 5887 (1984).

    Article  ADS  Google Scholar 

  10. L. O. Svaasand, Interaction between elastic surface waves in piezoelectric materials, Appl. Phys. Lett., 15, 300 (1969).

    Article  ADS  Google Scholar 

  11. R. B. Thompson and C. F. Quate, Nonlinear interaction of microwave electric fields and sound in LiNbO3, J. Appl. Phys., 42, 907 (1971).

    Article  ADS  Google Scholar 

  12. M. Ohno, Generation of acoustic phase conjugate waves using nonlinear electroacoustic interaction in LiNbO3, Appl. Phys. Lett., 54, 1979 (1989).

    Article  ADS  Google Scholar 

  13. A. P. Brysev, F. V. Bunkin, D. V. Vlasov, and Yu. E. Kazarov, Pis’ma v Zhurnal Tekhnicheskoj Fiziki, 8, 546 (1982) (Russian).

    Google Scholar 

  14. D. F. Nelson, Three-field electroacoustic parametric interaction in piezoelectric crystals, J. Acoust. Soc. Am., 64, 891 (1978).

    Article  ADS  MATH  Google Scholar 

  15. M. Ohno, Wave front reversal in acoustic phase conjugation by nonlinear electroacoustic interaction in LiNbO3, Appl. Phys. Lett., 55, 832 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ohno, M. (1991). Acoustic Phase Conjugation Using Nonlinear Electroacoustic Interaction and its Application to Scanning Acoustic Imaging Systems. In: Lee, H., Wade, G. (eds) Acoustical Imaging. Acoustical Imaging, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3692-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3692-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6641-6

  • Online ISBN: 978-1-4615-3692-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics