Skip to main content

Results from an Experimental Synthetic Aperture Sonar

  • Chapter

Part of the book series: Acoustical Imaging ((ACIM,volume 18))

Abstract

Imaging sonars can be subdivided into two main categories: real aperture and synthetic aperture. Real aperture sonars obtain a high azimuth resolution by radiating very narrow beams and therefore require large apertures and/or high acoustic frequencies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Dutkiewicz, M.K. & Denbigh, P.N., 1987, Synthetic aperture sonar for sub-bottom imaging, Acoust. Im., Plenum, NY: 585.

    Google Scholar 

  • Farhat, N.H, 1977, Principles of broad-band coherent imaging, J. Opt. Soc. Am., 67: 1015.

    Article  ADS  Google Scholar 

  • Fink, M., 1980, Theoretical aspects of the Fresnel focusing technique, Acoust. Im., Plenum, NY: 149.

    Google Scholar 

  • Gough, P.T. & Hayes, M.P., 1989, Measurements of acoustic phase stability in Loch Linnhe, Scotland, J. Acoust. Soc. Am., In print.

    Google Scholar 

  • de Herring, P., 1984, Alternative schemes in synthetic aperture sonar processing, IEEE OE-9: 277.

    Google Scholar 

  • Loggins, C.D., Christoff, J.T. & Pipkin, E.L., 1982, Results from rail synthetic aperture experiments, J. Acoust. Soc. Am., Supp. 1: S85.

    Article  Google Scholar 

  • Nagai, K., 1984, Multifrequency acoustic holography using a narrow pulse, IEEE Su-31: 151.

    Google Scholar 

  • Rihaczek, A.W., 1969, Principles of High-Resolution Radar, McGraw, NY.

    Google Scholar 

  • Robinson, B.S., (1982), Speckle Processing for Ultrasonic Imaging, PhD,UofC,NZ.

    Google Scholar 

  • Sato, T. & Ikeda, O., 1977, Super-resolution ultrasonic imaging by combined spectral and aperture synthesis, J. Acoust. Soc. Am., 67:341.

    Article  ADS  Google Scholar 

  • Urick, R.J., 1975, Principles of Underwater Sound, McGraw, NY (2nd ed.).

    Google Scholar 

  • Williams, R.E., 1976, Creating an acoustic synthetic aperture in the ocean, J. Acoust. Soc. Am., 60: 60.

    Article  ADS  Google Scholar 

  • Winder, A.A., 1975, Sonar system technology, IEEE SU-22: 291.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hayes, M.P., Gough, P.T. (1991). Results from an Experimental Synthetic Aperture Sonar. In: Lee, H., Wade, G. (eds) Acoustical Imaging. Acoustical Imaging, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3692-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3692-5_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6641-6

  • Online ISBN: 978-1-4615-3692-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics