Skip to main content

An Experimental Study of Diffraction Tomography under the Born Approximation

  • Chapter

Part of the book series: Acoustical Imaging ((ACIM,volume 18))

Abstract

Diffraction tomography under the Born approximation was studied experimentally to help assess its potential utility for clinical imaging, particularly in the detection and classification of breast disease. The Born approximation is convenient to use since, being linear, it leads to simple and efficient inversion algorithms. However, its appropriateness for clinical imaging is questionable. In these experiments, particular care was taken to minimise errors of the data acquisition and image reconstruction processes in an effort to isolate the effects of the choice of the Born scattering model on the overall performance of diffraction tomography. Diffraction tomograms of a tissue mimicking breast phantom are compared with both X-ray and ultrasound computed tomograms The results indicate that, even under conditions when the assumptions of the Born approximation are violated, useful images can be obtained. Such images though not quantitatively accurate maps of the complex refractive index, allow identification of the major internal structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Mueller, M. Kaveh, and G Wade, Reconstructive tomography and applications to ultrasonics, Proc. IEEE 67:567 (1979).

    Article  ADS  Google Scholar 

  2. M. Kaveh, R K. Mueller, R. Rylander, T. R Coulter, and M. Soumekh, Experimental results in ultrasonic diffraction tomography, in: “Acoustical Imaging”, K. Y. Wang, ed., Plenum, New York, 9:433 (1980).

    Chapter  Google Scholar 

  3. R. K. Mueller, Diffraction tomography I: The wave equation, Ultrason. Imaging 2:213 (1980).

    Article  Google Scholar 

  4. M. Kaveh, M. Soumekh, and R. K. Mueller, A comparison of Born and Rytov approximations in acoustic tomography, in: “Acoustical Imaging”, J. P. Powers, ed., Plenum, New York, 11:325 (1982).

    Chapter  Google Scholar 

  5. A. P. Anderson and M. F. Adams, Synthetic aperture tomographic imaging for ultrasonic diagnostics, in: “Acoustical Imaging”, E. A. Ash and C. R Hill, eds., Plenum, New York, 12:565 (1982).

    Chapter  Google Scholar 

  6. M. Kaveh, M. Soumekh, Z. Q. Lu, R. K. Mueller, and J. F. Greenleaf, Further results on diffraction tomography using Rytov’s approximation, in: “Acoustical Imaging” E. A. Ash and C. R Hill, eds., Plenum, New York, 12:599 (1982).

    Chapter  Google Scholar 

  7. S. K. Kenue and J. F. Greenleaf, Limited angle multifrequency diffraction tomography, IEEE Trans. SU-29:213 (1982).

    Google Scholar 

  8. J. F. Greenleaf, Computerized tomography with ultrasound, PROC. IEEE 71:331 (1983).

    Article  Google Scholar 

  9. A. C. Kak, Tomographic imaging with diffracting and non-diffracting sources, in: “Array Signal Processing”, S. Haykin, ed., Prentice Hall, New Jersey, 351, (1984)

    Google Scholar 

  10. B. S. Robinson and J. F. Greenleaf, Computerized ultrasound tomography, in: “Three- Dimensional Biomedical Imaging”, R A. Robb, ed., CRC Press, Boca Raton, 2:76 (1985).

    Google Scholar 

  11. A. J. Devaney, Diffraction tomography, in: “Inverse Methods in Electromagnetic Imaging fl”, W. M. Boerner, ed., Reidel, Dordrecht, 2: 1107 (1985).

    Google Scholar 

  12. J. F. Greenleaf and A. Chu, Multifrequency diffraction tomography, in: “Acoustical Imaging”, M. Kaveh, R K. Mueller, and J. F. Greenleaf, eds.. Plenum, New York, 13:43 (1984).

    Chapter  Google Scholar 

  13. B. Duchene, D. Lesselier, and W. Tabbara, Experimental investigation of a diffraction tomography technique in fluid ultrasonics, IEEE Trans. UFFC-35:437 (1988)

    Google Scholar 

  14. M Kaveh, M. Soumekh, and J. F. Greenleaf. Signal processing for diffraction tomography, IEEE Trans. SU-32:230 (1984).

    Google Scholar 

  15. S. A. Johnson, F. Stenger, C. Wilcox, J. Ball, and M. J. Berggren, Wave equations and inverse solutions for soft tissue, in: “Acoustical Imaging”, J. P. Powers, ed., Plenum, New York, 11:409 (1982).

    Chapter  Google Scholar 

  16. B. S. Robinson and J. F. Greenleaf, Measurement and simulation of the scattering of ultrasound by penetrable cylinders, in: “Acoustical Imaging”, M. Kaveh, R. K. Mueller, and J. F. Greenleaf, eds., Plenum, New York, 13:163 (1984).

    Chapter  Google Scholar 

  17. B. S. Robinson and J. F. Greenleaf, The scattering of ultrasound by cylinders: Implications for diffraction tomography, J. Acoust. Soc. Am. 80:40 (1986).

    Article  ADS  Google Scholar 

  18. E. L. Madsen, J. A. Zagzebski, G. R. Frank, J. F. Greenleaf, and P. L. Carson, Anthropomorphic breast phantoms for assessing ultrasonic imaging system performance and for training ultrasonographers: Part II, J. Clin. Ultrasound 10:91 (1982).

    Article  Google Scholar 

  19. M. Soumekh, M. Kaveh, and R. K. Mu eller, Fourier domain reconstruction methods with application to diffraction tomography, in: “Acoustical Imaging”, M. Kaveh, R. K. Mueller, and J. F. Greenleaf, eds., Plenum, New York, 13:17 (1984).

    Chapter  Google Scholar 

  20. S. X. Pan, and A. C. Kak, A computational study of reconstruction algorithms for diffraction tomography: Interpolation versus filtered-backpropagation, IEEE Trans. ASSP-31:1262 (1983).

    Google Scholar 

  21. Z. Q. Lu, M. Kaveh, and R. K. Mueller, Diffraction tomography using beam waves: Z-average reconstruction, Ultrason. Imaging 6:95 (1984).

    Article  Google Scholar 

  22. R H. T. Bates, Renaissance inversion, in: “Inverse Problems of Acoustic and Elastic Waves”, F. Santosa, ed., SIAM, Philadelphia, 350 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robinson, B.S., Greenleaf, J.F. (1991). An Experimental Study of Diffraction Tomography under the Born Approximation. In: Lee, H., Wade, G. (eds) Acoustical Imaging. Acoustical Imaging, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3692-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3692-5_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6641-6

  • Online ISBN: 978-1-4615-3692-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics