Skip to main content

Quantum Spin Lattice Models: A Coupled-Cluster Treatment

  • Chapter
Condensed Matter Theories

Part of the book series: Condensed Matter Theories ((COMT,volume 6))

Abstract

Infinite one-dimensional chains of quantum-mechanical spins interacting via localized (typically nearest-neighbour) interactions, and their obvious extensions to regular lattices in higher numbers of dimensions, have been objects of theoretical interest for a very long time. Indeed, the exact energy eigenstates of the one-dimensional spin-half chain interacting via the isotropic Heisenberg interaction between neighbouring sites,. were exactly solved in principle by Bethe1 some sixty years ago. Since then the Bethe-ansatz type of solution has been discovered to be applicable to, and fundamental to, a much wider class of integrable Hamiltonian models. This latter feature undoubtedly explains by itself much of the continuing interest in these spin lattice models. Another reason is that, intriguingly, the exact method of Bethe seems to be surprisingly impervious to being extended to deal with similar models in a higher number of dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.A. Bethe, Z. Phys. 71:205 (1931).

    Article  ADS  Google Scholar 

  2. M. Roger and J.H. Hetherington, Phys. Rev. B 41:200 (1990).

    Article  ADS  Google Scholar 

  3. F. Coester, Nucl. Phys. 7:421 (1958)

    Article  Google Scholar 

  4. F. Coester and H. Kümmel, Nucl. Phys. 17:477 (1960).

    Article  MATH  Google Scholar 

  5. R.F. Bishop and H.G. Kümmel, Phys. Today 40(3):52 (1987).

    Article  Google Scholar 

  6. H. Kümmel, K.H. Lührmann and J.G. Zabolitzky, Phys. Rep. 36C:1 (1978).

    Article  ADS  Google Scholar 

  7. R.F. Bishop and K.H. Lührmann, Phys. Rev. B 17:3757 (1978).

    Article  ADS  Google Scholar 

  8. V. Kvasnička, V. Laurinc and S. Biskupič, Phys, Rep. 90C:160 (1982).

    ADS  Google Scholar 

  9. H. Kümmel, in: “Nucleon-Nucleon Interaction and Nuclear Many-Body Problems,” S.S. Wu and T.T.S. Kuo (eds.), World Scientific, Singapore (1984), p. 46.

    Google Scholar 

  10. B.D. Day and J.G. Zabolitzky, Nucl. Phys. A366:221 (1981).

    ADS  Google Scholar 

  11. J. Čižek, J. Chem. Phys. 45:4256 (1966); Adv. Chem. Phys. 14:35 (1969).

    Article  Google Scholar 

  12. K. Szalewicz, J.G. Zabolitzky, B. Jeziorski and H.J. Monkhorst, J. Chem. Phys. 81:2723 (1984).

    Article  ADS  Google Scholar 

  13. R.J. Bartlett, Ann. Rev. Phys. Chem. 32:359 (1981); J. Phys. Chem. 93:1697 (1989).

    Article  ADS  Google Scholar 

  14. R.F. Bishop and K.H. Lührmann, Phys. Rev. B 26:5523 (1982).

    Article  ADS  Google Scholar 

  15. K. Emrich and J.G. Zabolitzky, Phys. Rev. B 30:2049 (1984).

    Article  ADS  Google Scholar 

  16. U.B. Kaulfuss and M. Altenbokum, Phys. Rev. D 33:3658 (1986).

    Article  ADS  Google Scholar 

  17. R.F. Bishop, M.C. Boscá and M.F. Flynn, Phys. Rev. A 40:3484 (1989).

    Article  ADS  Google Scholar 

  18. J.S. Arponen and R.F. Bishop, Phys. Rev. Lett. 64:111 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. M. Funke, U. Kaulfuss and H. Kümmel, Phys. Rev. D 35:621 (1987).

    Article  ADS  Google Scholar 

  20. L. Hulthén, Arkiv Mat. Astron. Fysik 26A:No. 11 (1938).

    Google Scholar 

  21. P.W. Anderson, Phys. Rev. 86:694 (1952).

    Article  ADS  MATH  Google Scholar 

  22. R. Kubo, Phys. Rev. 87:568 (1952).

    Article  ADS  MATH  Google Scholar 

  23. R. Orbach, Phys. Rev. 112:309 (1958).

    Article  ADS  Google Scholar 

  24. J. des Cloiseaux and J.J. Pearson, Phys. Rev. 128:2131 (1962).

    Article  ADS  Google Scholar 

  25. C.N. Yang and C.P. Yang, Phys. Rev. 150:321 (1966).

    Article  ADS  Google Scholar 

  26. J. des Cloiseaux and M. Gaudin, J. Math. Phys. 7:1384 (1966).

    Article  ADS  Google Scholar 

  27. L.D. Faddeev and L.A. Takhtajan, Phys. Lett. 85A:375 (1981).

    MathSciNet  ADS  Google Scholar 

  28. P.P. Kulish and E.K. Sklyanin, Phys. Lett. 70A:461 (1979)

    MathSciNet  ADS  Google Scholar 

  29. L.D. Faddeev and L.A. Takhtajan, Usp. Mat. Nauk. 34:13 (1979).

    Google Scholar 

  30. L.D. Faddeev, Soviet Sci. Reviews, Contemp. Math. Phys. C1:107 (1980).

    Google Scholar 

  31. F.D.M. Haldane, Phys. Lett. 93A:464 (1983); Phys. Rev. Lett. 50:1153 (1983).

    MathSciNet  ADS  Google Scholar 

  32. E. Lieb, T. Schultz and D. Mattis, Ann. Phys. (NY) 16:407 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. I. Affleck and E.H. Lieb, Lett. Math. Phys. 12:57 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  34. J.B. Parkinson and J.C. Bonner, Phys. Rev. B 32:4703 (1985)

    Article  ADS  Google Scholar 

  35. M.P. Nightingale and H.W.J. Blote, Phys. Rev. B 32:659 (1986).

    Article  ADS  Google Scholar 

  36. I. Affleck, J. Phys.: Condens. Matter 1:3047 (1989).

    Article  ADS  Google Scholar 

  37. C.K. Lai, J. Math. Phys. 15:1675 (1974)

    Article  ADS  Google Scholar 

  38. B. Sutherland, Phys. Rev. B 12:3795 (1975).

    Article  ADS  Google Scholar 

  39. L.A. Takhtajan, Phys. Lett. 87A:479 (1982)

    MathSciNet  ADS  Google Scholar 

  40. H.M. Babujian, Phys. Lett. 90A:479 (1982); Nucl. Phys. B 215:317 (1983).

    ADS  Google Scholar 

  41. I. Affleck, T. Kennedy, E.H. Lieb and H. Tasaki, Phys. Rev. Lett. 59:799 (1987); Commun. Math. Phys. 115:477 (1988).

    Article  ADS  Google Scholar 

  42. J.B. Parkinson, J. Phys. C 21:3793 (1988)

    Article  ADS  Google Scholar 

  43. M.N. Barber and M.T. Batchelor, Phys. Rev. B 40:4621 (1989).

    Article  ADS  Google Scholar 

  44. J. Arponen, R.F. Bishop and E. Pajanne, in: “Condensed Matter Theories,” Vol. 2, P. Vashishta, R.K. Kalia and R.F. Bishop (eds.), Plenum, New York (1987), p. 357.

    Chapter  Google Scholar 

  45. J. Arponen, Ann. Phys. (N.Y.) 151:311 (1983).

    Article  ADS  Google Scholar 

  46. P.W. Anderson, Science 235:1196 (1987).

    Article  ADS  Google Scholar 

  47. N. Trivedi and D.M. Ceperley, Phys. Rev. B 41:4552 (1990).

    Article  ADS  Google Scholar 

  48. N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17:1133 (1966).

    Article  ADS  Google Scholar 

  49. K. Kubo and T. Kishi, Phys. Rev. Lett. 61:2585 (1988).

    Article  ADS  Google Scholar 

  50. J. Carlson, Phys. Rev. B 40:846 (1989).

    Article  ADS  Google Scholar 

  51. P.W. Anderson, Mater. Res. Bull. 8:153 (1973).

    Article  Google Scholar 

  52. K. Emrich, Nucl. Phys. A351:379, 397 (1981).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bishop, R.F., Parkinson, J.B., Xian, Y. (1991). Quantum Spin Lattice Models: A Coupled-Cluster Treatment. In: Fantoni, S., Rosati, S. (eds) Condensed Matter Theories. Condensed Matter Theories, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3686-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3686-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6638-6

  • Online ISBN: 978-1-4615-3686-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics