Skip to main content

The U(1)3 Lattice Gauge Vacuum

  • Chapter
Condensed Matter Theories

Part of the book series: Condensed Matter Theories ((COMT,volume 6))

Abstract

We adapt the method of correlated basis functions for a semi-analytic ab-initio treatment of lattice gauge models in the Hamiltonian formulation. The vacuum ground state of the quantum electrodynamic U(1)3 model on a square lattice is described by a Jastrow trial function and is optimized by employing the minimum principle of the ground state energy. We construct the associated optimal elementary excitations in the uncharged sector by setting up an appropriate Feynman eigenvalue equation. Numerical calculations on this set of states and associated quantities at coupling parameters 0 ≤ λ ≤ 6 are performed in conjunction with the hypernetted-chain approximation. Numerical results are presented on optimized single-plaquette quantities such as the plaquette energy, the single-plaquette profile and the mean-field potential. We report further on pair-plaquette quantities such as the electric and magnetic field correlation functions which depend not only on the strength parameter A but also on the relative plaquette distance. We present numerical data on the energies of the lowest branch of elementary excitations and, particularly, on the optimized lattice-photon (glueball) mass. The results are discussed and compared with previous numerical results and future improvements are indicated. We finally demonstrate the stability of the vacuum ground state with respect to the local fluctuations represented by the optimal elementary excitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Clark and E. Feenberg, Phys. Rev. 113, 388 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. H. W. Jackson and E. Feenberg, Ann. Phys. (N.Y.) 15, 266 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. F. Coester, Nucl. Phys. 7, 421 (1958)

    Article  Google Scholar 

  4. R. F. Bishop and H. G. Kümmel, Phys. Today 40(3), 52 (1987).

    Article  Google Scholar 

  5. A. D. Jackson, A. Lande and R. A. Smith, Phys. Reports 86, 55 (1982)

    Article  ADS  Google Scholar 

  6. A. D. Jackson et al., Phys. Rev. B 31, 403 (1985).

    Article  ADS  Google Scholar 

  7. S. Fantoni, X. Wang, E. Tosatti, and Lu Yu, Physica C 153-155, 1255 (1988).

    Article  ADS  Google Scholar 

  8. M. L. Ristig, Z. Phys. B — Condensed Matter 79, 351 (1990).

    Article  ADS  Google Scholar 

  9. A. Dabringhaus and M. L. Ristig, in Condensed Matter Theories, edited by J. Keller (Plenum Press, New York, 1989), Vol. 4.

    Google Scholar 

  10. S. D. Drell, H. R. Quinn, B. Svetitsky, and M. Weinstein, Phys. Rev. D 19, 619 (1979).

    Article  ADS  Google Scholar 

  11. S. A. Chin, J. W. Negele, and S. E. Koonin, Ann. Phys. 157, 140 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  12. J. Kogut, D. K. Sinclair, and L. Susskind, Nucl. Phys. B 114, 199 (1976).

    Article  ADS  Google Scholar 

  13. A. C. Irving, J. F. Owens, and C. J. Hamer, Phys. Rev. D 28, 2059 (1983).

    Article  ADS  Google Scholar 

  14. U. M. Heller, Phys. Rev. D 23, 2357 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  15. D. W. Heys and D. R. Stump, Nucl. Phys. B285, 13 (1987).

    Article  ADS  Google Scholar 

  16. A. Dabringhaus, Diploma thesis, 1987, and PhD thesis, Universität zu Köln; 1990, (unpublished).

    Google Scholar 

  17. A. Dabringhaus, M. L. Ristig, and J. W. Clark, preprint 1990.

    Google Scholar 

  18. E. Feenberg, Theory of Quantum Fluids (Academic Press, New York, 1969).

    Google Scholar 

  19. E. Krotscheck, G.-X. Qian, and W. Kohn, Phys. Rev. B 31, 4245 (1985).

    Article  ADS  Google Scholar 

  20. R. P. Feynman, Phys. Rev. 94, 262 (1954).

    Article  ADS  MATH  Google Scholar 

  21. N. N. Bogoliubov, Lectures on Quantum Statistics (Gordon & Breach, New York, 1967), Vol. 1.

    MATH  Google Scholar 

  22. L. Szybisz and M. L. Ristig, Phys. Rev. B 40, 4391 (1989).

    ADS  Google Scholar 

  23. J. W. Clark, in Progress in Particle and Nuclear Physics, edited by D. Wilkinson (Pergamon, New York, 1979).

    Google Scholar 

  24. T. Barnes and D. Kotchan, Phys. Rev. D 35, 1947 (1987).

    Article  ADS  Google Scholar 

  25. A. M. Polyakov, Nucl. Phys. B210, 429 (1977).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dabringhaus, A., Ristig, M.L. (1991). The U(1)3 Lattice Gauge Vacuum. In: Fantoni, S., Rosati, S. (eds) Condensed Matter Theories. Condensed Matter Theories, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3686-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3686-4_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6638-6

  • Online ISBN: 978-1-4615-3686-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics